論文の概要: Many Episode Learning in a Modular Embodied Agent via End-to-End
Interaction
- arxiv url: http://arxiv.org/abs/2204.08687v1
- Date: Tue, 19 Apr 2022 06:11:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 22:32:02.144158
- Title: Many Episode Learning in a Modular Embodied Agent via End-to-End
Interaction
- Title(参考訳): エンド・ツー・エンドインタラクションによるモジュラーエンボディエージェントにおけるエピソード学習
- Authors: Yuxuan Sun, Ethan Carlson, Rebecca Qian, Kavya Srinet, Arthur Szlam
- Abstract要約: 本稿では,機械学習(ML)を駆使したエージェントを,クラウドワーカーとのインタラクションを通じて改善するケーススタディを提案する。
エージェントはモジュールのセットで構成されており、そのうちのいくつかは学習され、その他は学習される。
エージェントの設計と複数のアノテーションインタフェースの設計の連携について述べる。
- 参考スコア(独自算出の注目度): 22.14911101362573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we give a case study of an embodied machine-learning (ML)
powered agent that improves itself via interactions with crowd-workers. The
agent consists of a set of modules, some of which are learned, and others
heuristic. While the agent is not "end-to-end" in the ML sense, end-to-end
interaction is a vital part of the agent's learning mechanism. We describe how
the design of the agent works together with the design of multiple annotation
interfaces to allow crowd-workers to assign credit to module errors from
end-to-end interactions, and to label data for individual modules. Over
multiple automated human-agent interaction, credit assignment, data annotation,
and model re-training and re-deployment, rounds we demonstrate agent
improvement.
- Abstract(参考訳): 本研究では,機械学習(ML)を利用したエージェントのケーススタディを,クラウドワーカーとのインタラクションを通じて改善する。
エージェントは一連のモジュールで構成され、その一部は学習され、その他はヒューリスティックである。
エージェントはMLの意味では「エンドツーエンド」ではないが、エンドツーエンドのインタラクションはエージェントの学習メカニズムの重要な部分である。
エージェントの設計と複数のアノテーションインターフェースの設計を組み合わせることで、クラウドワーカーがエンド・ツー・エンドのインタラクションからモジュールエラーに対するクレジットを割り当て、個々のモジュールに対してデータをラベル付けできるようにします。
複数の自動化された人間とエージェントのインタラクション、クレジットの割り当て、データアノテーション、モデルの再トレーニングと再デプロイを通じて、私たちはエージェントの改善を示します。
関連論文リスト
- AutoGen Studio: A No-Code Developer Tool for Building and Debugging Multi-Agent Systems [31.113305753414913]
ATOGEN STUDIOは、マルチエージェントシステムを迅速にプロトタイピングするためのノーコード開発ツールである。
エージェント仕様のための直感的なドラッグ&ドロップUI、インタラクティブな評価、再利用可能なエージェントコンポーネントのギャラリーを提供する。
論文 参考訳(メタデータ) (2024-08-09T03:27:37Z) - SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering [79.07755560048388]
SWEエージェント(SWE-agent)は、LMエージェントが自律的にコンピュータを使用してソフトウェア工学のタスクを解決するシステムである。
SWEエージェントのカスタムエージェントコンピュータインタフェース(ACI)は、エージェントがコードファイルを作成し編集し、リポジトリ全体をナビゲートし、テストやその他のプログラムを実行する能力を著しく向上させる。
我々はSWE-benchとHumanEvalFixのSWE-agentを評価し、それぞれ12.5%と87.7%のパス@1レートで最先端の性能を実現した。
論文 参考訳(メタデータ) (2024-05-06T17:41:33Z) - Verco: Learning Coordinated Verbal Communication for Multi-agent Reinforcement Learning [42.27106057372819]
本稿では,大規模言語モデルをエージェントに組み込むマルチエージェント強化学習アルゴリズムを提案する。
フレームワークにはメッセージモジュールとアクションモジュールがある。
オーバークッキングゲームで行った実験は,既存の手法の学習効率と性能を大幅に向上させることを示した。
論文 参考訳(メタデータ) (2024-04-27T05:10:33Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
拡散モデル(DM)は、最近オフライン強化学習を含む様々なシナリオで大きな成功を収めた。
この問題に対処する新しい生成型マルチエージェント学習フレームワークであるMADiffを提案する。
本実験は,マルチエージェント学習タスクにおけるベースラインアルゴリズムと比較して,MADiffの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-27T02:14:09Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - BGC: Multi-Agent Group Belief with Graph Clustering [1.9949730506194252]
エージェントがコミュニケーションなしで情報を交換できる半通信方式を提案する。
近接するエージェントを小さなグループに分割し,グループ内のエージェントの信念を最小化するグループベースのモジュールを提案する。
その結果,提案手法はSMACベンチマークの大幅な改善を実現していることがわかった。
論文 参考訳(メタデータ) (2020-08-20T07:07:20Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
本稿では,マルチエージェントインタラクションモデリング問題をマルチエージェント模倣学習フレームワークに実装する。
相関ポリシー(CoDAIL)を用いた分散型適応模倣学習アルゴリズムの開発
様々な実験により、CoDAILはデモレーターに近い複雑な相互作用をより良く再生できることが示されている。
論文 参考訳(メタデータ) (2020-01-04T17:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。