Cumulative Stay-time Representation for Electronic Health Records in
Medical Event Time Prediction
- URL: http://arxiv.org/abs/2204.13451v2
- Date: Mon, 2 May 2022 09:54:35 GMT
- Title: Cumulative Stay-time Representation for Electronic Health Records in
Medical Event Time Prediction
- Authors: Takayuki Katsuki, Kohei Miyaguchi, Akira Koseki, Toshiya Iwamori,
Ryosuke Yanagiya, Atsushi Suzuki
- Abstract summary: We propose a novel data representation for EHR called cumulative stay-time representation (CTR)
CTR directly models such cumulative health conditions.
We derive a trainable construction of CTR based on neural networks that has the flexibility to fit the target data.
- Score: 8.261597797345342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of predicting when a disease will develop, i.e.,
medical event time (MET), from a patient's electronic health record (EHR). The
MET of non-communicable diseases like diabetes is highly correlated to
cumulative health conditions, more specifically, how much time the patient
spent with specific health conditions in the past. The common time-series
representation is indirect in extracting such information from EHR because it
focuses on detailed dependencies between values in successive observations, not
cumulative information. We propose a novel data representation for EHR called
cumulative stay-time representation (CTR), which directly models such
cumulative health conditions. We derive a trainable construction of CTR based
on neural networks that has the flexibility to fit the target data and
scalability to handle high-dimensional EHR. Numerical experiments using
synthetic and real-world datasets demonstrate that CTR alone achieves a high
prediction performance, and it enhances the performance of existing models when
combined with them.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks.
Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation.
arXiv Detail & Related papers (2022-11-11T07:36:18Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
We propose a novel COntinuous patient state PERceiver model, called COPER, to cope with irregular time-series in EHRs.
neural ordinary differential equations (ODEs) help COPER to generate regular time-series to feed to Perceiver model.
To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset.
arXiv Detail & Related papers (2022-08-05T14:32:57Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Conditional Generation of Medical Time Series for Extrapolation to
Underrepresented Populations [27.49371449726921]
HealthGen generates synthetic cohorts that are more faithful to real patient EHRs than the current state-of-the-art.
augmenting real data sets with conditionally generated cohorts of underrepresented subpopulations of patients can significantly enhance the generalisability of models.
arXiv Detail & Related papers (2022-01-20T14:04:21Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
generative adversarial network (GAN) entitled EHR-M-GAN which synthesizes textitmixed-type timeseries EHR data.
We have validated EHR-M-GAN on three publicly-available intensive care unit databases with records from a total of 141,488 unique patients.
arXiv Detail & Related papers (2021-12-22T17:17:34Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
We propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) for time-varying confounding in longitudinal data.
DeepRite is shown to recover the ground truth from synthetic data, and estimate unbiased treatment effects from real data.
arXiv Detail & Related papers (2020-10-28T15:05:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.