論文の概要: A Simple and General Duality Proof for Wasserstein Distributionally
Robust Optimization
- arxiv url: http://arxiv.org/abs/2205.00362v3
- Date: Sun, 31 Dec 2023 06:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 03:17:35.745306
- Title: A Simple and General Duality Proof for Wasserstein Distributionally
Robust Optimization
- Title(参考訳): Wasserstein分布ロバスト最適化のための単純かつ一般的な双対証明
- Authors: Luhao Zhang, Jincheng Yang, Rui Gao
- Abstract要約: We present a basic yet general proof of duality for Wasserstein distributionally robust optimization。
この双対性は任意のカントロビッチ輸送コスト、測定可能な損失関数、および名目確率分布にかかわる。
Infinity-Wasserstein分散ロバストな最適化、リスク-逆最適化、グローバル化された分散ロバストな最適化などである。
- 参考スコア(独自算出の注目度): 12.401212718437867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an elementary yet general proof of duality for Wasserstein
distributionally robust optimization. The duality holds for any arbitrary
Kantorovich transport cost, measurable loss function, and nominal probability
distribution, provided that an interchangeability principle holds, which is
equivalent to certain measurability conditions. To illustrate the broader
applicability of our approach, we provide a rigorous treatment of duality
results in distributionally robust Markov decision processes and
distributionally robust multistage stochastic programming. Furthermore, we
extend the result to other problems including infinity-Wasserstein
distributionally robust optimization, risk-averse optimization, and globalized
distributionally robust counterpart.
- Abstract(参考訳): 本稿では,wasserstein 分布的ロバスト最適化のための初等的かつ一般的な双対性証明を提案する。
この双対性は、ある可測性条件と等価な交換性原理が成立するならば、任意のカントロビッチ輸送コスト、可測損失関数、および名目確率分布に成り立つ。
提案手法のより広範な適用性を示すため,マルコフ決定過程と多段階確率計画における双対性結果の厳密な扱いについて述べる。
さらに,infinity-wasserstein分布ロバスト最適化,リスク回避最適化,グローバル化分布ロバスト最適化など,他の問題にもその結果を拡張した。
関連論文リスト
- Contextual Optimization under Covariate Shift: A Robust Approach by Intersecting Wasserstein Balls [18.047245099229325]
2つのワッサーシュタイン球の交叉によって設定されたあいまいさを利用する分布的ロバストなアプローチを提案する。
提案したモデルの強烈な経験的性能を実証する。
論文 参考訳(メタデータ) (2024-06-04T15:46:41Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Universal generalization guarantees for Wasserstein distributionally robust models [10.036727981085223]
本稿では,非滑らかな解析理論と古典的な集中結果を組み合わせた新しい証明手法を提案する。
我々のアプローチは、(二重)正則化を含む分布的に頑健な問題を最近のワッサーシュタイン/シンクホーンに拡張するのに十分である。
論文 参考訳(メタデータ) (2024-02-19T09:27:47Z) - An Inexact Halpern Iteration with Application to Distributionally Robust
Optimization [9.529117276663431]
決定論的および決定論的収束設定におけるスキームの不正確な変種について検討する。
不正確なスキームを適切に選択することにより、(予想される)剰余ノルムの点において$O(k-1)収束率を許容することを示す。
論文 参考訳(メタデータ) (2024-02-08T20:12:47Z) - Wasserstein Distributionally Robust Estimation in High Dimensions:
Performance Analysis and Optimal Hyperparameter Tuning [0.0]
雑音線形測定から未知パラメータを推定するための分布的ロバストな推定フレームワークを提案する。
このような推定器の2乗誤差性能を解析する作業に着目する。
凸凹最適化問題の解法として2乗誤差を復元できることを示す。
論文 参考訳(メタデータ) (2022-06-27T13:02:59Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical
Solution [8.465228064780748]
2つの点でサポートされる離散確率測度の間のWasserstein距離の計算が既に#P-hardであることを証明します。
目的関数が最も悪質な外乱分布で滑らかになる分布的に頑健な双対最適輸送問題を導入する。
双対目的関数の平滑化は主目的関数の正則化と等価であることを示す。
論文 参考訳(メタデータ) (2021-03-10T18:53:59Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z) - Distributionally Robust Bayesian Optimization [121.71766171427433]
そこで本研究では,ゼロ次雑音最適化のための分散ロバストなベイズ最適化アルゴリズム(DRBO)を提案する。
提案アルゴリズムは, 種々の設定において, 線形に頑健な後悔を確実に得る。
提案手法は, 実世界のベンチマークと実世界のベンチマークの両方において, 頑健な性能を示す。
論文 参考訳(メタデータ) (2020-02-20T22:04:30Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
確率分布が未知な分布の不確実性の下でBQOについて検討する。
標準的なBQOアプローチは、固定されたサンプル集合が与えられたときの真の期待目標のモンテカルロ推定を最大化する。
この目的のために,新しい後方サンプリングに基づくアルゴリズム,すなわち分布的に堅牢なBQO(DRBQO)を提案する。
論文 参考訳(メタデータ) (2020-01-19T12:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。