Drone Flocking Optimization using NSGA-II and Principal Component
Analysis
- URL: http://arxiv.org/abs/2205.00432v1
- Date: Sun, 1 May 2022 09:24:01 GMT
- Title: Drone Flocking Optimization using NSGA-II and Principal Component
Analysis
- Authors: Jagdish Chand Bansal, Nikhil Sethi, Ogbonnaya Anicho, Atulya Nagar
- Abstract summary: Individual agents in natural systems like flocks of birds or schools of fish display a remarkable ability to coordinate and communicate in local groups.
Emulating such natural systems into drone swarms to solve problems in defence, agriculture, industry automation and humanitarian relief is an emerging technology.
optimized flocking of drones in a confined environment with multiple conflicting objectives is proposed.
- Score: 0.8495139954994114
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Individual agents in natural systems like flocks of birds or schools of fish
display a remarkable ability to coordinate and communicate in local groups and
execute a variety of tasks efficiently. Emulating such natural systems into
drone swarms to solve problems in defence, agriculture, industry automation and
humanitarian relief is an emerging technology. However, flocking of aerial
robots while maintaining multiple objectives, like collision avoidance, high
speed etc. is still a challenge. In this paper, optimized flocking of drones in
a confined environment with multiple conflicting objectives is proposed. The
considered objectives are collision avoidance (with each other and the wall),
speed, correlation, and communication (connected and disconnected agents).
Principal Component Analysis (PCA) is applied for dimensionality reduction, and
understanding the collective dynamics of the swarm. The control model is
characterised by 12 parameters which are then optimized using a multi-objective
solver (NSGA-II). The obtained results are reported and compared with that of
the CMA-ES algorithm. The study is particularly useful as the proposed
optimizer outputs a Pareto Front representing different types of swarms which
can applied to different scenarios in the real world.
Related papers
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Enhancing Robotic Navigation: An Evaluation of Single and
Multi-Objective Reinforcement Learning Strategies [0.9208007322096532]
This study presents a comparative analysis between single-objective and multi-objective reinforcement learning methods for training a robot to navigate effectively to an end goal.
By modifying the reward function to return a vector of rewards, each pertaining to a distinct objective, the robot learns a policy that effectively balances the different goals.
arXiv Detail & Related papers (2023-12-13T08:00:26Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - A Multi-objective Memetic Algorithm for Auto Adversarial Attack
Optimization Design [1.9100854225243937]
Well-designed adversarial defense strategies can improve the robustness of deep learning models against adversarial examples.
Given the defensed model, the efficient adversarial attack with less computational burden and lower robust accuracy is needed to be further exploited.
We propose a multi-objective memetic algorithm for auto adversarial attack optimization design, which realizes the automatical search for the near-optimal adversarial attack towards defensed models.
arXiv Detail & Related papers (2022-08-15T03:03:05Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
The goal is to maximize the sum-rate of whole trajectories for multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots.
An integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$3$QN) algorithm.
arXiv Detail & Related papers (2022-05-03T17:14:47Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z) - Multi-Agent Reinforcement Learning for Unmanned Aerial Vehicle
Coordination by Multi-Critic Policy Gradient Optimization [16.6182621419268]
In agriculture, disaster management, search and rescue operations, commercial and military applications, the advantage of applying a fleet of drones originates from their ability to cooperate autonomously.
We propose a Multi-Agent Reinforcement Learning approach that achieves a stable policy network update and similarity in reward signal development for an increasing number of agents.
arXiv Detail & Related papers (2020-12-31T07:00:44Z) - Evolutionary Gait Transfer of Multi-Legged Robots in Complex Terrains [14.787379075870383]
This paper proposes a transfer learning-based evolutionary framework for gait optimization, named Tr-GO.
The idea is to initialize a high-quality population by using the technique of transfer learning, so any kind of population-based optimization algorithms can be seamlessly integrated into this framework.
The experimental results show the effectiveness of the proposed framework for the gait optimization problem based on three multi-objective evolutionary algorithms.
arXiv Detail & Related papers (2020-12-24T16:41:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.