論文の概要: A walk through of time series analysis on quantum computers
- arxiv url: http://arxiv.org/abs/2205.00986v1
- Date: Mon, 2 May 2022 15:32:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 17:30:43.434868
- Title: A walk through of time series analysis on quantum computers
- Title(参考訳): 量子コンピュータにおける時系列解析のウォークスルー
- Authors: Ammar Daskin
- Abstract要約: 古典的なデータ前処理とARIMAモデルによる予測の量子アナログを網羅する。
本稿では,今後の方向性と,量子コンピュータ上での時間的データ解析に使用できるツールやアルゴリズムについて論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Because of the rotational components on quantum circuits, some quantum neural
networks based on variational circuits can be considered equivalent to the
classical Fourier networks. In addition, they can be used to predict Fourier
coefficients of continuous functions. Time series data indicates a state of a
variable in time. Since some time series data can be also considered as
continuous functions, we can expect quantum machine learning models to do do
many data analysis tasks successfully on time series data. Therefore, it is
important to investigate new quantum logics for temporal data processing and
analyze intrinsic relationships of data on quantum computers.
In this paper, we go through the quantum analogues of classical data
preprocessing and forecasting with ARIMA models by using simple quantum
operators requiring a few number of quantum gates. Then we discuss future
directions and some of the tools/algorithms that can be used for temporal data
analysis on quantum computers.
- Abstract(参考訳): 量子回路上の回転成分のため、変分回路に基づく量子ニューラルネットワークは古典的なフーリエネットワークと等価であると考えられる。
さらに、それらは連続関数のフーリエ係数を予測するのに使うことができる。
時系列データは、時間内の変数の状態を示す。
時系列データの一部も連続関数と見なすことができるので、量子機械学習モデルは時系列データ上で多くのデータ分析タスクをうまく行うことを期待できる。
したがって、時間的データ処理のための新しい量子論理を探求し、量子コンピュータ上のデータ固有の関係を分析することが重要である。
本稿では、数個の量子ゲートを必要とする単純な量子演算子を用いて、古典的データ前処理とARIMAモデルによる予測の量子アナログを経る。
次に,量子コンピュータ上での時間データ解析に使用できる今後の方向性とツール・アルゴリズムについて述べる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Exponential quantum advantages in learning quantum observables from classical data [1.9662978733004604]
我々は、古典的なデータから量子オブザーバブルを学習する物理的に関係のあるタスクに対して、量子上の利点を証明している。
我々の結果は、量子多体物理学の領域における機械学習問題に対する量子コンピュータの実用性に光を当てた。
論文 参考訳(メタデータ) (2024-05-03T11:58:43Z) - A Model for Circuit Execution Runtime And Its Implications for Quantum
Kernels At Practical Data Set Sizes [0.5906031288935515]
本稿では,量子回路に要する総回路実行時間に関するモデルを提案する。
また、「回路の量子体積層の有効数」の概念も導入する。
現在の量子コンピュータの速度で、我々のモデルはデータセットを数時間で処理できると予測している。
論文 参考訳(メタデータ) (2023-07-11T02:38:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - A Quantum Optical Recurrent Neural Network for Online Processing of
Quantum Times Series [0.7087237546722617]
量子光リカレントニューラルネットワーク(QORNN)は,量子チャネルの伝送速度を高めることができることを示す。
また、同モデルが不要であれば、同様のメモリ効果に対処できることも示している。
我々は、この最後のタスクの小さなバージョンをフォトニックプロセッサのBorealis上で実行します。
論文 参考訳(メタデータ) (2023-05-31T19:19:25Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Learning temporal data with variational quantum recurrent neural network [0.5658123802733283]
パラメタライズド量子回路を用いて時間データを学習する手法を提案する。
この研究は、時間データの学習に複雑な量子力学を利用する方法を提供する。
論文 参考訳(メタデータ) (2020-12-21T10:47:28Z) - The effect of data encoding on the expressive power of variational
quantum machine learning models [0.7734726150561088]
量子コンピュータは、パラメトリド量子回路をデータ入力を予測にマッピングするモデルとして扱うことで教師あり学習に使用できる。
本稿では,関数近似器としてパラメトリド量子回路の表現力に,データがモデルに符号化される戦略がどう影響するかを検討する。
論文 参考訳(メタデータ) (2020-08-19T18:00:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。