論文の概要: Learning temporal data with variational quantum recurrent neural network
- arxiv url: http://arxiv.org/abs/2012.11242v1
- Date: Mon, 21 Dec 2020 10:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 00:38:08.571074
- Title: Learning temporal data with variational quantum recurrent neural network
- Title(参考訳): 変動量子リカレントニューラルネットワークによる時間データの学習
- Authors: Yuto Takaki, Kosuke Mitarai, Makoto Negoro, Keisuke Fujii, Masahiro
Kitagawa
- Abstract要約: パラメタライズド量子回路を用いて時間データを学習する手法を提案する。
この研究は、時間データの学習に複雑な量子力学を利用する方法を提供する。
- 参考スコア(独自算出の注目度): 0.5658123802733283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for learning temporal data using a parametrized quantum
circuit. We use the circuit that has a similar structure as the recurrent
neural network which is one of the standard approaches employed for this type
of machine learning task. Some of the qubits in the circuit are utilized for
memorizing past data, while others are measured and initialized at each time
step for obtaining predictions and encoding a new input datum. The proposed
approach utilizes the tensor product structure to get nonlinearity with respect
to the inputs. Fully controllable, ensemble quantum systems such as an NMR
quantum computer is a suitable choice of an experimental platform for this
proposal. We demonstrate its capability with Simple numerical simulations, in
which we test the proposed method for the task of predicting cosine and
triangular waves and quantum spin dynamics. Finally, we analyze the dependency
of its performance on the interaction strength among the qubits in numerical
simulation and find that there is an appropriate range of the strength. This
work provides a way to exploit complex quantum dynamics for learning temporal
data.
- Abstract(参考訳): パラメータ化量子回路を用いて時間データを学習する手法を提案する。
この種の機械学習タスクに採用される標準的なアプローチの1つである、リカレントニューラルネットワークと同様の構造を持つ回路を用いる。
回路内のいくつかの量子ビットは過去のデータの記憶に利用され、その他は予測と新しい入力データムの符号化のために各時間ステップで測定および初期化される。
提案手法は入力に対して非線形性を得るためにテンソル積構造を利用する。
NMR量子コンピュータのような完全に制御可能でアンサンブルな量子システムは、この提案のための実験プラットフォームに適した選択である。
そこで本研究では,コサインおよび三角波の予測と量子スピンダイナミクスのタスクのための提案手法を,簡単な数値シミュレーションを用いて検証する。
最後に, 数値シミュレーションにおいて, 量子ビット間の相互作用強度に対する性能の依存性を分析し, 強度の適切な範囲があることを見出した。
この研究は、時間データの学習に複雑な量子力学を利用する方法を提供する。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
初期の量子コンピューティングの領域において重要な取り組みであるクロスプラットフォーム検証は、同一のアルゴリズムを実行する2つの不完全な量子デバイスとの類似性を特徴づけようと試みている。
本稿では,この課題におけるデータの形式化が2つの異なるモダリティを具現化する,革新的なマルチモーダル学習手法を提案する。
我々はこれらのモダリティから知識を独立して抽出するマルチモーダルニューラルネットワークを考案し、続いて融合操作により包括的データ表現を生成する。
論文 参考訳(メタデータ) (2023-11-07T04:35:03Z) - Quantum Federated Learning for Distributed Quantum Networks [9.766446130011706]
本稿では,量子力学の興味深い特徴を利用した分散量子ネットワークのための量子フェデレーション学習を提案する。
分散量子ネットワーク内のクライアントがローカルモデルをトレーニングするのを助けるために、量子勾配降下アルゴリズムが提供される。
量子セキュアなマルチパーティ計算プロトコルを設計し,中国の残差定理を用いた。
論文 参考訳(メタデータ) (2022-12-25T14:37:23Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Analog quantum variational embedding classifier [8.445680783099196]
アナログ量子コンピュータを用いたゲート型変分埋め込み分類器を提案する。
性能が飽和し変動するまでのキュービット数を増やすことで分類器の性能を向上させることができる。
提案アルゴリズムは,現実的な機械学習問題を解決するために,現在の量子アニールを用いた可能性を示す。
論文 参考訳(メタデータ) (2022-11-04T20:58:48Z) - Quantum Compressive Sensing: Mathematical Machinery, Quantum Algorithms,
and Quantum Circuitry [10.286119086329762]
圧縮センシングは、比較的少数の測定値から大きな信号の再構成を容易にするプロトコルである。
近年の研究では、興味のある信号の構造を学ぶためにテンソルネットワークを訓練する、データ駆動型アプローチが検討されている。
我々は、テンソルネットワークの状態が絡み合った量子ビットの集合上の量子状態である別の「量子」プロトコルを提案する。
論文 参考訳(メタデータ) (2022-04-27T16:20:28Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。