qLEET: Visualizing Loss Landscapes, Expressibility, Entangling Power and
Training Trajectories for Parameterized Quantum Circuits
- URL: http://arxiv.org/abs/2205.02095v2
- Date: Mon, 26 Jun 2023 19:48:13 GMT
- Title: qLEET: Visualizing Loss Landscapes, Expressibility, Entangling Power and
Training Trajectories for Parameterized Quantum Circuits
- Authors: Utkarsh Azad and Animesh Sinha
- Abstract summary: qLEET is an open-source Python package for studying parameterized quantum circuits (PQCs)
It enables the computation of properties such as expressibility and entangling power of a PQC.
It supports quantum circuits and noise models built using popular quantum computing libraries such as Qiskit, Cirq, and Pyquil.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present qLEET, an open-source Python package for studying parameterized
quantum circuits (PQCs), which are widely used in various variational quantum
algorithms (VQAs) and quantum machine learning (QML) algorithms. qLEET enables
the computation of properties such as expressibility and entangling power of a
PQC by studying its entanglement spectrum and the distribution of parameterized
states produced by it. Furthermore, it allows users to visualize the training
trajectories of PQCs along with high-dimensional loss landscapes generated by
them for different objective functions. It supports quantum circuits and noise
models built using popular quantum computing libraries such as Qiskit, Cirq,
and Pyquil. In our work, we demonstrate how qLEET provides opportunities to
design and improve hybrid quantum-classical algorithms by utilizing intuitive
insights from the ansatz capability and structure of the loss landscape.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Potential and limitations of random Fourier features for dequantizing
quantum machine learning [0.5277756703318045]
Quantum machine learning is arguably one of the most explored applications of near-term quantum devices.
Much focus has been put on notions of variational quantum machine learning where parameterized quantum circuits (PQCs) are used as learning models.
In this work, we establish necessary and sufficient conditions under which RFF does indeed provide an efficient dequantization of variational quantum machine learning for regression.
arXiv Detail & Related papers (2023-09-20T21:23:52Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Learning capability of parametrized quantum circuits [2.51657752676152]
Variational quantum algorithms (VQAs) and their applications in the field of quantum machine learning through parametrized quantum circuits (PQCs) are thought to be one major way of leveraging noisy intermediate-scale quantum computing devices.
In this paper, we build upon the work by Schuld et al. and compare popular ans"atze for PQCs through the new measure of learning capability.
We also examine dissipative quantum neural networks (dQNN) as introduced by Beer et al. and propose a data re-upload structure for dQNNs to increase their learning capability.
arXiv Detail & Related papers (2022-09-21T13:26:20Z) - Evolutionary Quantum Architecture Search for Parametrized Quantum
Circuits [7.298440208725654]
We introduce EQAS-PQC, an evolutionary quantum architecture search framework for PQC-based models.
We show that our method can significantly improve the performance of hybrid quantum-classical models.
arXiv Detail & Related papers (2022-08-23T19:47:37Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum
Algorithms [51.02972483763309]
Variational Quantum Algorithms (VQAs) are promising candidates for finding practical applications of quantum computers.
This work is accompanied by the release of the open-source Python package $textitorqviz$, which provides code to compute and flexibly plot 1D and 2D scans.
arXiv Detail & Related papers (2021-11-08T18:17:59Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
We introduce a training method for parametrized quantum circuits (PQCs) that can be used to solve RL tasks for discrete and continuous state spaces.
We investigate which architectural choices for quantum Q-learning agents are most important for successfully solving certain types of environments.
arXiv Detail & Related papers (2021-03-28T08:57:22Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.