A constraint on local definitions of quantum internal energy
- URL: http://arxiv.org/abs/2205.04457v3
- Date: Sat, 14 Oct 2023 18:25:21 GMT
- Title: A constraint on local definitions of quantum internal energy
- Authors: Luis Rodrigo Torres Neves, Frederico Brito
- Abstract summary: We argue that a universal definition of internal energy for open quantum systems may be devised, setting limits on its possible properties.
We show that it should involve at least up to the second-order derivative, otherwise failing to recover the previously-known internal energy of the "universe"
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in quantum thermodynamics have been focusing on ever more
elementary systems of interest, approaching the limit of a single qubit, with
correlations, strong coupling and non-equilibrium environments coming into
play. Under such scenarios, it is clear that fundamental physical quantities
must be revisited. This article questions whether a universal definition of
internal energy for open quantum systems may be devised, setting limits on its
possible properties. We argue that, for such a definition to be regarded as
local, it should be implemented as a functional of the open system's reduced
density operator and its time derivatives. Then we show that it should involve
at least up to the second-order derivative, otherwise failing to recover the
previously-known internal energy of the "universe". Possible implications of
this general result are discussed.
Related papers
- Thermodynamics of a Quantum Subsystem [0.0]
We analyze the thermodynamics of a quantum subsystem driven quasi-statically by external forces.
We show that the thermodynamic functions of a quantum subsystem can be defined dynamically in terms of its local spectrum.
arXiv Detail & Related papers (2024-10-22T06:06:20Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - On the First Law of Thermodynamics in Time-Dependent Open Quantum
Systems [0.0]
How to rigorously define thermodynamic quantities such as heat, work, and internal energy in open quantum systems driven far from equilibrium remains a significant open question in quantum thermodynamics.
Heat is a quantity whose fundamental definition applies only to processes in systems infinitesimally perturbed from equilibrium.
Heat is accounted for carefully in strongly-driven systems.
arXiv Detail & Related papers (2022-08-13T02:26:31Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Unconventional mechanism of virtual-state population through dissipation [125.99533416395765]
We report a phenomenon occurring in open quantum systems by which virtual states can acquire a sizable population in the long time limit.
This means that the situation where the virtual state remains unpopulated can be metastable.
We show how these results can be relevant for practical questions such as the generation of stable and metastable entangled states in dissipative systems of interacting qubits.
arXiv Detail & Related papers (2022-02-24T17:09:43Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - The origin of loose bound of the thermodynamic uncertainty relation in a
dissipative two-level quantum system [0.0]
thermodynamic uncertainty relations dictate the trade-off between dissipation and fluctuations of irreversible current.
It has been noticed that the bound is less tight in open quantum processes.
Our study offers a better understanding of how quantum nature affects the TUR bound.
arXiv Detail & Related papers (2021-08-10T00:26:02Z) - Sufficient conditions for adiabaticity in open quantum systems [0.0]
We introduce sufficient conditions for the adiabatic approximation in open quantum systems.
We first illustrate our results by showing that the adiabatic approximation for open systems is compatible with the description of quantum thermodynamics at thermal equilibrium.
We also apply our sufficient conditions as a tool in quantum control, evaluating the adiabatic behavior for the Hamiltonians of both the Deutsch algorithm and the Landau-Zener model under decoherence.
arXiv Detail & Related papers (2020-07-29T22:19:42Z) - Universal Error Bound for Constrained Quantum Dynamics [0.0]
We establish an observable-based error bound for a constrained-dynamics approximation in generic gapped quantum systems.
Our work establishes a universal and rigorous result concerning nonequilibrium quantum dynamics.
arXiv Detail & Related papers (2020-01-03T06:25:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.