論文の概要: Implementation and Empirical Evaluation of a Quantum Machine Learning
Pipeline for Local Classification
- arxiv url: http://arxiv.org/abs/2205.05333v1
- Date: Wed, 11 May 2022 08:18:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 12:38:58.949236
- Title: Implementation and Empirical Evaluation of a Quantum Machine Learning
Pipeline for Local Classification
- Title(参考訳): 局所分類のための量子機械学習パイプラインの実装と実証評価
- Authors: Enrico Zardini, Enrico Blanzieri, Davide Pastorello
- Abstract要約: 本稿では,ローカル分類のためのQMLパイプラインのPython実装について述べる。
具体的には、量子k-NNと量子二項分類器からなる。
その結果、量子パイプラインは(正確性の観点から)理想の場合の古典的な等価性を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the current era, quantum resources are extremely limited, and this makes
difficult the usage of quantum machine learning (QML) models. Concerning the
supervised tasks, a viable approach is the introduction of a quantum locality
technique, which allows the models to focus only on the neighborhood of the
considered element. A well-known locality technique is the k-nearest neighbors
(k-NN) algorithm, of which several quantum variants have been proposed.
Nevertheless, they have not been employed yet as a preliminary step of other
QML models, whereas the classical counterpart has already proven successful. In
this paper, we present (i) an implementation in Python of a QML pipeline for
local classification, and (ii) its extensive empirical evaluation.
Specifically, the quantum pipeline, developed using Qiskit, consists of a
quantum k-NN and a quantum binary classifier. The results have shown the
quantum pipeline's equivalence (in terms of accuracy) to its classical
counterpart in the ideal case, the validity of locality's application to the
QML realm, but also the strong sensitivity of the chosen quantum k-NN to
probability fluctuations and the better performance of classical baseline
methods like the random forest.
- Abstract(参考訳): 現在の時代には、量子リソースは非常に限られており、量子機械学習(qml)モデルの使用が困難になっている。
教師付きタスクに関して、実行可能なアプローチは量子局所性(quantum locality)技術を導入し、モデルが考慮された要素の近傍にのみ集中できるようにすることである。
有名な局所性手法はk-nearest neighbors (k-NN)アルゴリズムであり、いくつかの量子変種が提案されている。
しかしながら、他のQMLモデルの予備的なステップとしてはまだ採用されていないが、古典的なモデルはすでに成功している。
本稿では,本稿で紹介する。
i) ローカル分類のためのQMLパイプラインのPythonの実装、および
(ii)広範な実証的評価。
具体的には、Qiskitを用いて開発された量子パイプラインは、量子k-NNと量子二項分類器からなる。
その結果、量子パイプラインの古典的等価性(正確性の観点からは)は、QML領域への局所性の適用の妥当性だけでなく、確率変動に対する選択された量子k-NNの強い感度や、ランダムフォレストのような古典的ベースライン法の性能も示している。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Ansatz-Agnostic Exponential Resource Saving in Variational Quantum
Algorithms Using Shallow Shadows [5.618657159109373]
変分量子アルゴリズム(VQA)は、短期的な量子優位性の実証の有望な候補として特定されている。
本報告では,本論文で研究されている浅層アンザッツに対して,同様のレベルの貯蓄を実現するための浅層影に基づくプロトコルを提案する。
VQAが強力な選択肢となる量子情報、すなわち変分量子状態準備と変分量子回路合成の2つの重要な応用が示されている。
論文 参考訳(メタデータ) (2023-09-09T11:00:39Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
変分量子アルゴリズム(VQA)は,LDA法とバランスの取れた精度で性能が向上したことを示す。
現在の量子コンピュータはノイズが多く、テストする量子ビットは少ないため、QML法の現在の量子的利点と潜在的な量子的優位性を実証することは困難である。
論文 参考訳(メタデータ) (2022-08-28T16:58:37Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
本稿では,複数の小型量子デバイスの量子資源を協調的に利用することにより,スケーラブルな量子ニューラルネットワーク(SQNN)を実現する手法を提案する。
SQNNシステムでは、いくつかの量子デバイスが量子特徴抽出器として使われ、入力インスタンスから並列に局所的な特徴を抽出し、量子デバイスは量子予測器として機能する。
論文 参考訳(メタデータ) (2022-08-04T20:35:03Z) - Quantum variational learning for entanglement witnessing [0.0]
この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
論文 参考訳(メタデータ) (2022-05-20T20:14:28Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
本研究では、堅牢性多変数混合整数プログラム(MIP)の解法を含むReLUネットワークの検証について検討する。
この問題を軽減するために、ニューラルネットワーク検証にQCを用い、証明可能な証明書を計算するためのハイブリッド量子プロシージャを導入することを提案する。
シミュレーション環境では,我々の証明は健全であり,問題の近似に必要な最小量子ビット数に制限を与える。
論文 参考訳(メタデータ) (2022-05-02T13:23:56Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。