論文の概要: Productivity Assessment of Neural Code Completion
- arxiv url: http://arxiv.org/abs/2205.06537v1
- Date: Fri, 13 May 2022 09:53:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 20:21:30.646284
- Title: Productivity Assessment of Neural Code Completion
- Title(参考訳): ニューラルコード補完の生産性評価
- Authors: Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh
Sittampalam, Alice Li, Andrew Rice, Devon Rifkin, and Edward Aftandilian
- Abstract要約: 私たちは、GitHub Copilotのユーザに対して、生産性への影響について尋ね、直接測定可能なユーザデータの認識の反映を見つけようとしています。
提案された提案が受け入れられる確率は、コード内の完了の持続性に関するより具体的な指標よりも、開発者の生産性に対する認識を促進することが分かっています。
- 参考スコア(独自算出の注目度): 4.821593904732654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural code synthesis has reached a point where snippet generation is
accurate enough to be considered for integration into human software
development workflows. Commercial products aim to increase programmers'
productivity, without being able to measure it directly. In this case study, we
asked users of GitHub Copilot about its impact on their productivity, and
sought to find a reflection of their perception in directly measurable user
data. We find that the rate with which shown suggestions are accepted, rather
than more specific metrics regarding the persistence of completions in the code
over time, drives developers' perception of productivity.
- Abstract(参考訳): ニューラルコード合成は、スニペット生成が人間のソフトウェア開発ワークフローへの統合を考えるのに十分な精度に達している。
商用製品は、直接測定することなく、プログラマの生産性を向上させることを目指している。
このケーススタディでは、GitHub Copilotのユーザに対して、生産性への影響について質問し、直接測定可能なユーザデータに対する認識の反映を見つけようとしました。
提案が受け入れられる割合は、コード内の完了の持続性に関するより具体的な指標ではなく、開発者の生産性に対する認識を後押ししていることが分かりました。
関連論文リスト
- Towards Decoding Developer Cognition in the Age of AI Assistants [9.887133861477233]
本稿では,生理的計測(EEGとアイトラッキング)とインタラクションデータを組み合わせて,AI支援プログラミングツールの開発者による使用状況を調べるための制御された観察的研究を提案する。
私たちは、認知負荷とタスク完了時間を計測しながら、AIアシストの有無に関わらず、プログラムタスクを完了させるために、プロの開発者を募集します。
論文 参考訳(メタデータ) (2025-01-05T23:25:21Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data [49.1574468325115]
ChatGPTは、ソフトウェア生産効率を向上させるAIツールである。
10万人あたりのgitプッシュ数、リポジトリ数、ユニークな開発者数に対するChatGPTの影響を見積もっています。
これらの結果は、ChatGPTのようなAIツールが開発者の生産性を大幅に向上させる可能性があることを示唆している。
論文 参考訳(メタデータ) (2024-06-16T19:11:15Z) - A Study on Developer Behaviors for Validating and Repairing LLM-Generated Code Using Eye Tracking and IDE Actions [13.58143103712]
GitHub Copilotは、LLM(Big Language Model)ベースのコード生成ツールである。
本稿では,Copilotが生成したコードを開発者がどのように検証し,修復するかを検討する。
コードの存在を認識したことにより、パフォーマンスの向上、検索努力の向上、コパイロットの使用頻度の向上、認知作業負荷の向上につながった。
論文 参考訳(メタデータ) (2024-05-25T06:20:01Z) - LLM-Based Test-Driven Interactive Code Generation: User Study and Empirical Evaluation [13.800675921118348]
本稿では,ガイド付き意図明確化のための対話型ワークフローTiCoderを提案する。
コード生成精度を向上させるためのワークフローの有効性を実証的に評価する。
我々は,5つのユーザインタラクション内において,データセットと全LLMのパス@1コード生成精度が平均45.97%向上したことを観察した。
論文 参考訳(メタデータ) (2024-04-15T19:16:32Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - Aligning Offline Metrics and Human Judgments of Value for Code
Generation Models [25.726216146776054]
正確性は高価値な世代をキャプチャするが、プログラマは、コーディングタスクの完了に必要な全体的な労力を減らすことで、単体テストに失敗するコードを価値として評価する。
本稿では,機能的正しさと構文的類似性を組み合わせたハイブリッド計量を提案し,値との相関が14%強いことを示す。
論文 参考訳(メタデータ) (2022-10-29T05:03:28Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
本稿では,語彙のコピーと類似したセマンティクスを持つコード参照の両方を検索により活用する検索拡張コード補完フレームワークを提案する。
我々は,Python および Java プログラミング言語のコード補完タスクにおけるアプローチを評価し,CodeXGLUE ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-15T08:25:08Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
私たちは、WS 学習パイプラインの全体的な生産性を、一般的な WS 監督アプローチと比較して平均20%(最大 47% のタスク)改善する、エンドツーエンドのインタラクティブなスーパービジョンシステムである Nemo を紹介します。
論文 参考訳(メタデータ) (2022-03-02T19:57:32Z) - Towards End-to-end Video-based Eye-Tracking [50.0630362419371]
画像のみから視線を推定することは、観察不可能な人固有の要因のために難しい課題である。
本稿では,これらの意味的関係と時間的関係を明確に学習することを目的とした,新しいデータセットとアタッチメント手法を提案する。
視覚刺激からの情報と視線画像の融合が,文献に記録された人物と同じような性能を達成することにつながることを実証した。
論文 参考訳(メタデータ) (2020-07-26T12:39:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。