論文の概要: A Study on Developer Behaviors for Validating and Repairing LLM-Generated Code Using Eye Tracking and IDE Actions
- arxiv url: http://arxiv.org/abs/2405.16081v1
- Date: Sat, 25 May 2024 06:20:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 01:10:08.048422
- Title: A Study on Developer Behaviors for Validating and Repairing LLM-Generated Code Using Eye Tracking and IDE Actions
- Title(参考訳): アイトラッキングとIDEアクションを用いたLCM生成コードの検証と修正のための開発者の行動に関する研究
- Authors: Ningzhi Tang, Meng Chen, Zheng Ning, Aakash Bansal, Yu Huang, Collin McMillan, Toby Jia-Jun Li,
- Abstract要約: GitHub Copilotは、LLM(Big Language Model)ベースのコード生成ツールである。
本稿では,Copilotが生成したコードを開発者がどのように検証し,修復するかを検討する。
コードの存在を認識したことにより、パフォーマンスの向上、検索努力の向上、コパイロットの使用頻度の向上、認知作業負荷の向上につながった。
- 参考スコア(独自算出の注目度): 13.58143103712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing use of large language model (LLM)-powered code generation tools, such as GitHub Copilot, is transforming software engineering practices. This paper investigates how developers validate and repair code generated by Copilot and examines the impact of code provenance awareness during these processes. We conducted a lab study with 28 participants, who were tasked with validating and repairing Copilot-generated code in three software projects. Participants were randomly divided into two groups: one informed about the provenance of LLM-generated code and the other not. We collected data on IDE interactions, eye-tracking, cognitive workload assessments, and conducted semi-structured interviews. Our results indicate that, without explicit information, developers often fail to identify the LLM origin of the code. Developers generally employ similar validation and repair strategies for LLM-generated code, but exhibit behaviors such as frequent switching between code and comments, different attentional focus, and a tendency to delete and rewrite code. Being aware of the code's provenance led to improved performance, increased search efforts, more frequent Copilot usage, and higher cognitive workload. These findings enhance our understanding of how developers interact with LLM-generated code and carry implications for designing tools that facilitate effective human-LLM collaboration in software development.
- Abstract(参考訳): 大規模言語モデル(LLM)ベースのコード生成ツールであるGitHub Copilotの利用が増加し、ソフトウェアエンジニアリングのプラクティスが変化している。
本稿では,Copilotが生成したコードの検証と修復方法について検討し,これらのプロセスにおけるコード発見意識の影響について検討する。
我々は,Copilotの生成したコードを3つのソフトウェアプロジェクトで検証し,修復する役割を担った28人の被験者を対象に,実験室で調査を行った。
参加者はランダムに2つのグループに分けられた。
我々は,IDEのインタラクション,視線追跡,認知作業負荷評価などのデータを収集し,半構造化インタビューを行った。
我々の結果は、明示的な情報がないと、開発者はコードのLLM起源を識別できないことが多いことを示唆している。
開発者は一般的に、LLM生成コードに対して同様の検証と修正戦略を採用するが、コードとコメントの頻繁な切り替え、異なる注意点、コード削除と書き直しの傾向などの振る舞いを示す。
コードの存在を認識したことにより、パフォーマンスの向上、検索努力の向上、コパイロットの使用頻度の向上、認知作業負荷の向上につながった。
これらの知見は、開発者がLLM生成コードとどのように相互作用するかの理解を深め、ソフトウェア開発における効果的な人間とLLMのコラボレーションを促進するツールの設計に影響を及ぼす。
関連論文リスト
- A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation [0.0]
最近27の論文がレビューされ、2つのグループに分けられた。
最初のグループは、意味的エラーの特定を含む、バグの検出と修復のための新しいメソッドで構成されている。
2つ目のグループはコード生成に精通しており、プログラミングとタスク固有のモデルのために微調整された汎用LLMの概要を提供している。
また、識別子認識トレーニング、命令レベルでの微調整、セマンティックコード構造の導入など、コード生成を改善する方法も提示されている。
論文 参考訳(メタデータ) (2024-11-12T06:47:54Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
大規模言語モデル(LLM)は、様々なコード関連のタスクで顕著な進歩を遂げています。
本調査は、総合的かつ最新の文献レビューを提供することで、学界と実践的発展のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T17:48:15Z) - AI-powered Code Review with LLMs: Early Results [10.37036924997437]
本稿では,Large Language Model (LLM) ベースのモデルを用いて,ソフトウェアの品質と効率を改善する新しい手法を提案する。
提案するLLMベースのAIエージェントモデルは,大規模コードリポジトリ上でトレーニングされている。
コードの臭いを検出し、潜在的なバグを特定し、改善の提案を提供し、コードを最適化することを目的としている。
論文 参考訳(メタデータ) (2024-04-29T08:27:50Z) - How Far Have We Gone in Binary Code Understanding Using Large Language Models [51.527805834378974]
バイナリコード理解におけるLarge Language Models(LLM)の有効性を評価するためのベンチマークを提案する。
評価の結果、既存のLLMはバイナリコードをある程度理解でき、それによってバイナリコード解析の効率が向上することが明らかとなった。
論文 参考訳(メタデータ) (2024-04-15T14:44:08Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
大規模言語モデル(LLM)は人工知能の飛躍であり、人間の言語を用いたタスクに優れる。
本稿では、AI生成したコードを分析し、コード生成に使用するプロンプトと人間の介入レベルを分析し、コードをコードベースに統合する。
ソフトウェア開発の初期段階において,LSMが重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2024-01-29T14:32:32Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
大規模言語モデル(LLM)は、特にソフトウェア開発において、様々な領域に大きな変化をもたらした。
本稿では,新しいLLM学習フレームワークであるExperiential Co-Learningを紹介する。
実験では、このフレームワークにより、エージェントは、目に見えないソフトウェア開発タスクをより効果的に対処できることを示した。
論文 参考訳(メタデータ) (2023-12-28T13:50:42Z) - A^3-CodGen: A Repository-Level Code Generation Framework for Code Reuse with Local-Aware, Global-Aware, and Third-Party-Library-Aware [13.27883339389175]
本稿では,A3-CodGenと呼ばれる新しいコード生成フレームワークを提案する。
その結果、A3-CodGenフレームワークを採用することで、コードリポジトリ情報をLLMに抽出、ヒューズ、フィードし、より正確で、効率的で、再利用性の高いコードを生成します。
論文 参考訳(メタデータ) (2023-12-10T05:36:06Z) - Collaborative, Code-Proximal Dynamic Software Visualization within Code
Editors [55.57032418885258]
本稿では,コードエディタに組み込むソフトウェアビジュアライゼーション手法の設計と実装について紹介する。
私たちのコントリビューションは、ソフトウェアシステムの実行時の動作の動的解析を使用するという点で、関連する作業と異なります。
私たちの視覚化アプローチは、一般的なリモートペアプログラミングツールを強化し、共有コード都市を利用することで協調的に使用できます。
論文 参考訳(メタデータ) (2023-08-30T06:35:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。