A cGAN Ensemble-based Uncertainty-aware Surrogate Model for Offline Model-based Optimization in Industrial Control Problems
- URL: http://arxiv.org/abs/2205.07250v2
- Date: Sun, 24 Mar 2024 03:33:39 GMT
- Title: A cGAN Ensemble-based Uncertainty-aware Surrogate Model for Offline Model-based Optimization in Industrial Control Problems
- Authors: Cheng Feng,
- Abstract summary: This study focuses on two important problems related to applying offline model-based optimization to real-world industrial control problems.
The first problem is how to create a reliable probabilistic model that accurately captures the dynamics present in noisy industrial data.
The second problem is how to reliably optimize control parameters without actively collecting feedback from industrial systems.
- Score: 2.280762565226767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study focuses on two important problems related to applying offline model-based optimization to real-world industrial control problems. The first problem is how to create a reliable probabilistic model that accurately captures the dynamics present in noisy industrial data. The second problem is how to reliably optimize control parameters without actively collecting feedback from industrial systems. Specifically, we introduce a novel cGAN ensemble-based uncertainty-aware surrogate model for reliable offline model-based optimization in industrial control problems. The effectiveness of the proposed method is demonstrated through extensive experiments conducted on two representative cases, namely a discrete control case and a continuous control case. The results of these experiments show that our method outperforms several competitive baselines in the field of offline model-based optimization for industrial control.
Related papers
- Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - A Cost-Sensitive Transformer Model for Prognostics Under Highly
Imbalanced Industrial Data [1.6492989697868894]
This paper introduces a novel cost-sensitive transformer model developed as part of a systematic workflow.
We observed a substantial enhancement in performance compared to state-of-the-art methods.
Our findings highlight the potential of our method in addressing the unique challenges of failure prediction in industrial settings.
arXiv Detail & Related papers (2024-01-16T15:09:53Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Model-based Offline Policy Optimization with Adversarial Network [0.36868085124383626]
We propose a novel Model-based Offline policy optimization framework with Adversarial Network (MOAN)
Key idea is to use adversarial learning to build a transition model with better generalization.
Our approach outperforms existing state-of-the-art baselines on widely studied offline RL benchmarks.
arXiv Detail & Related papers (2023-09-05T11:49:33Z) - Resiliency Analysis of LLM generated models for Industrial Automation [0.7018015405843725]
This paper proposes a study of the resilience and efficiency of automatically generated industrial automation and control systems using Large Language Models (LLMs)
The study aims to provide insights into the effectiveness and reliability of automatically generated systems in industrial automation and control, and to identify potential areas for improvement in their design and implementation.
arXiv Detail & Related papers (2023-08-23T13:35:36Z) - Pessimistic Model Selection for Offline Deep Reinforcement Learning [56.282483586473816]
Deep Reinforcement Learning (DRL) has demonstrated great potentials in solving sequential decision making problems in many applications.
One main barrier is the over-fitting issue that leads to poor generalizability of the policy learned by DRL.
We propose a pessimistic model selection (PMS) approach for offline DRL with a theoretical guarantee.
arXiv Detail & Related papers (2021-11-29T06:29:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - A Reinforcement Learning-based Economic Model Predictive Control
Framework for Autonomous Operation of Chemical Reactors [0.5735035463793008]
This work presents a novel framework for integrating EMPC and RL for online model parameter estimation of a class of nonlinear systems.
The major advantage of this framework is its simplicity; state-of-the-art RL algorithms and EMPC schemes can be employed with minimal modifications.
arXiv Detail & Related papers (2021-05-06T13:34:30Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.