Resiliency Analysis of LLM generated models for Industrial Automation
- URL: http://arxiv.org/abs/2308.12129v1
- Date: Wed, 23 Aug 2023 13:35:36 GMT
- Title: Resiliency Analysis of LLM generated models for Industrial Automation
- Authors: Oluwatosin Ogundare, Gustavo Quiros Araya, Ioannis Akrotirianakis,
Ankit Shukla
- Abstract summary: This paper proposes a study of the resilience and efficiency of automatically generated industrial automation and control systems using Large Language Models (LLMs)
The study aims to provide insights into the effectiveness and reliability of automatically generated systems in industrial automation and control, and to identify potential areas for improvement in their design and implementation.
- Score: 0.7018015405843725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a study of the resilience and efficiency of automatically
generated industrial automation and control systems using Large Language Models
(LLMs). The approach involves modeling the system using percolation theory to
estimate its resilience and formulating the design problem as an optimization
problem subject to constraints. Techniques from stochastic optimization and
regret analysis are used to find a near-optimal solution with provable regret
bounds. The study aims to provide insights into the effectiveness and
reliability of automatically generated systems in industrial automation and
control, and to identify potential areas for improvement in their design and
implementation.
Related papers
- Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning [15.615208767760663]
This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies.
We demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments.
arXiv Detail & Related papers (2024-08-29T15:39:12Z) - AutoTRIZ: Artificial Ideation with TRIZ and Large Language Models [2.7624021966289605]
Theory of Inventive Problem Solving is widely applied for systematic innovation.
The complexity of TRIZ resources and concepts, coupled with its reliance on users' knowledge, experience, and reasoning capabilities, limits its practicality.
This paper proposes AutoTRIZ, an artificial ideation tool that uses LLMs to automate and enhance the TRIZ methodology.
arXiv Detail & Related papers (2024-03-13T02:53:36Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Reinforcement Learning of Display Transfer Robots in Glass Flow Control
Systems: A Physical Simulation-Based Approach [6.229216953398305]
A flow control system is a critical concept for increasing the production capacity of manufacturing systems.
To solve the scheduling optimization problem related to the flow control, existing methods depend on a design by domain human experts.
We propose a method to implement a physical simulation environment and devise a feasible flow control system design using a transfer robot in display manufacturing.
arXiv Detail & Related papers (2023-10-12T02:10:29Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - On a Uniform Causality Model for Industrial Automation [61.303828551910634]
A Uniform Causality Model for various application areas of industrial automation is proposed.
The resulting model describes the behavior of Cyber-Physical Systems mathematically.
It is shown that the model can work as a basis for the application of new approaches in industrial automation that focus on machine learning.
arXiv Detail & Related papers (2022-09-20T11:23:51Z) - A cGAN Ensemble-based Uncertainty-aware Surrogate Model for Offline Model-based Optimization in Industrial Control Problems [2.280762565226767]
This study focuses on two important problems related to applying offline model-based optimization to real-world industrial control problems.
The first problem is how to create a reliable probabilistic model that accurately captures the dynamics present in noisy industrial data.
The second problem is how to reliably optimize control parameters without actively collecting feedback from industrial systems.
arXiv Detail & Related papers (2022-05-15T10:27:49Z) - Partitioned Active Learning for Heterogeneous Systems [5.331649110169476]
We propose the partitioned active learning strategy established upon partitioned GP (PGP) modeling.
Global searching scheme accelerates the exploration aspect of active learning.
Local searching exploits the active learning criterion induced by the local GP model.
arXiv Detail & Related papers (2021-05-14T02:05:31Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.