論文の概要: Customizing ML Predictions for Online Algorithms
- arxiv url: http://arxiv.org/abs/2205.08715v1
- Date: Wed, 18 May 2022 04:22:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-19 19:59:35.459629
- Title: Customizing ML Predictions for Online Algorithms
- Title(参考訳): オンラインアルゴリズムのためのML予測のカスタマイズ
- Authors: Keerti Anand, Rong Ge, Debmalya Panigrahi
- Abstract要約: ML損失関数に最適化ベンチマークを組み込むことで,性能が大幅に向上することを示す。
我々は、理論的境界と数値シミュレーションの両方を通してこの発見を支援している。
- 参考スコア(独自算出の注目度): 17.305332963531978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A popular line of recent research incorporates ML advice in the design of
online algorithms to improve their performance in typical instances. These
papers treat the ML algorithm as a black-box, and redesign online algorithms to
take advantage of ML predictions. In this paper, we ask the complementary
question: can we redesign ML algorithms to provide better predictions for
online algorithms? We explore this question in the context of the classic
rent-or-buy problem, and show that incorporating optimization benchmarks in ML
loss functions leads to significantly better performance, while maintaining a
worst-case adversarial result when the advice is completely wrong. We support
this finding both through theoretical bounds and numerical simulations.
- Abstract(参考訳): 最近の一般的な研究のラインでは、典型的なインスタンスのパフォーマンスを改善するために、オンラインアルゴリズムの設計にMLアドバイスが組み込まれている。
これらの論文は、MLアルゴリズムをブラックボックスとして扱い、ML予測を活用するためにオンラインアルゴリズムを再設計する。
本稿では,オンラインアルゴリズムにより良い予測を提供するため,MLアルゴリズムを再設計できるだろうか?
本稿では,従来の賃貸代金問題において,ML損失関数に最適化ベンチマークを組み込むことで,性能が著しく向上する一方で,アドバイスが完全に間違っている場合の最悪の逆効果も維持できることを示す。
理論的境界と数値シミュレーションの両方を通してこの発見を支援する。
関連論文リスト
- Overcoming Brittleness in Pareto-Optimal Learning-Augmented Algorithms [6.131022957085439]
本稿では,ユーザ特定プロファイルを用いて,アルゴリズムの性能のスムーズさを強制する新しいフレームワークを提案する。
我々は、この新しいアプローチを、よく研究されたオンライン問題、すなわち片道取引問題に適用する。
論文 参考訳(メタデータ) (2024-08-07T23:15:21Z) - Improving Online Algorithms via ML Predictions [19.03466073202238]
我々は,スキーレンタルと非好ましくないジョブスケジューリングの2つの古典的問題を考察し,予測を用いて意思決定を行う新しいオンラインアルゴリズムを得る。
これらのアルゴリズムは予測器の性能を損なうものであり、より良い予測で改善するが、予測が貧弱な場合はあまり劣化しない。
論文 参考訳(メタデータ) (2024-07-25T02:17:53Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental
Problem via Best-Possible Competitive Analysis [0.1529342790344802]
マルチオプションスキーレンタル問題に対する学習向上アルゴリズムを提案する。
提案アルゴリズムは,この問題に対して最も有効なランダム化競合アルゴリズムに基づいている。
論文 参考訳(メタデータ) (2023-02-14T05:05:03Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Explainable Landscape Analysis in Automated Algorithm Performance
Prediction [0.0]
自動アルゴリズムの性能予測において,異なる教師付き機械学習モデルによって活用される問題景観の特徴の表現性について検討する。
教師付きML回帰モデルでは,問題ランドスケープの特徴が異なるため,教師付きML手法の選択が重要であることを実験的に指摘した。
論文 参考訳(メタデータ) (2022-03-22T15:54:17Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
非論理的スケジューリングでは、優先度不明な処理条件でジョブをスケジューリングするためのオンライン戦略を見つけることが課題である。
我々はこのよく研究された問題を、アルゴリズム設計に(信頼できない)予測を統合する、最近人気の高い学習強化された設定で再検討する。
これらの予測には所望の特性があり, 高い性能保証を有するアルゴリズムと同様に, 自然な誤差測定が可能であることを示す。
論文 参考訳(メタデータ) (2022-02-21T13:18:11Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - The Primal-Dual method for Learning Augmented Algorithms [10.2730668356857]
我々は、オンラインアルゴリズムの原始二重法を拡張し、次のアクションについてオンラインアルゴリズムにアドバイスする予測を組み込む。
我々のアルゴリズムは、予測が正確である場合にも、予測が誤解を招くとき、適切な保証を維持しながら、どのオンラインアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-22T11:58:47Z) - Optimal Robustness-Consistency Trade-offs for Learning-Augmented Online
Algorithms [85.97516436641533]
機械学習予測を取り入れたオンラインアルゴリズムの性能向上の課題について検討する。
目標は、一貫性と堅牢性の両方を備えたアルゴリズムを設計することだ。
機械学習予測を用いた競合解析のための非自明な下界の最初のセットを提供する。
論文 参考訳(メタデータ) (2020-10-22T04:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。