Universal Parity Quantum Computing
- URL: http://arxiv.org/abs/2205.09505v2
- Date: Wed, 2 Nov 2022 10:21:40 GMT
- Title: Universal Parity Quantum Computing
- Authors: Michael Fellner, Anette Messinger, Kilian Ender, Wolfgang Lechner
- Abstract summary: We show that logical controlled phase gate and $R_z$ rotations can be implemented in parity encoding with single-qubit operations.
We present a method to switch between different encoding variants via partial on-the-fly encoding and decoding.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a universal gate set for quantum computing with all-to-all
connectivity and intrinsic robustness to bit-flip errors based on parity
encoding. We show that logical controlled phase gate and $R_z$ rotations can be
implemented in parity encoding with single-qubit operations. Together with
logical $R_x$ rotations, implemented via nearest-neighbor controlled-NOT gates
and an $R_x$ rotation, these form a universal gate set. As the controlled phase
gate requires only single-qubit rotations, the proposed scheme has advantages
for several cornerstone quantum algorithms, e.g., the quantum Fourier
transform. We present a method to switch between different encoding variants
via partial on-the-fly encoding and decoding.
Related papers
- Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware [2.536162003546062]
We present an approach to synthesize multi controlled phase gates using ZX calculus.
By representing quantum circuits as graph like ZX diagrams, one can utilize the distinct graph structure of diagonal gates.
arXiv Detail & Related papers (2024-03-16T09:06:49Z) - Error-corrected Hadamard gate simulated at the circuit level [42.002147097239444]
We simulate the logical Hadamard gate in the surface code under a circuit-level noise model.
Our paper is the first to do this for a unitary gate on a quantum error-correction code.
arXiv Detail & Related papers (2023-12-18T19:00:00Z) - One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing [8.478982715648547]
Scheme for qubits with $XX+YY$ coupling realizes any two-qubit gate up to single-qubit gates.
We observe marked improvements across various applications, including generic $n$-qubit gate synthesis, quantum volume, and qubit routing.
arXiv Detail & Related papers (2023-12-09T19:30:31Z) - Constant-depth circuits for Uniformly Controlled Gates and Boolean
functions with application to quantum memory circuits [42.979881926959486]
We propose two types of constant-depth constructions for implementing Uniformly Controlled Gates.
We obtain constant-depth circuits for the quantum counterparts of read-only and read-write memory devices.
arXiv Detail & Related papers (2023-08-16T17:54:56Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - A Quantum Algorithm for Computing All Diagnoses of a Switching Circuit [73.70667578066775]
Faults are by nature while most man-made systems, and especially computers, work deterministically.
This paper provides such a connecting via quantum information theory which is an intuitive approach as quantum physics obeys probability laws.
arXiv Detail & Related papers (2022-09-08T17:55:30Z) - Applications of Universal Parity Quantum Computation [0.0]
We demonstrate the applicability of a universal gate set in the parity encoding, which is a dual to the standard gate model.
Embedding these algorithms in the parity encoding reduces the circuit depth compared to conventional gate-based implementations.
We propose simple implementations of multiqubit gates in tailored encodings and an efficient strategy to prepare graph states.
arXiv Detail & Related papers (2022-05-19T12:31:46Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Simple implementation of high fidelity controlled-$i$SWAP gates and
quantum circuit exponentiation of non-Hermitian gates [0.0]
The $i$swap gate is an entangling swapping gate where the qubits obtain a phase of $i$ if the state of the qubits is swapped.
We present a simple implementation of the controlled-$i$swap gate.
arXiv Detail & Related papers (2020-02-26T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.