A Correlation Information-based Spatiotemporal Network for Traffic Flow
Forecasting
- URL: http://arxiv.org/abs/2205.10365v1
- Date: Fri, 20 May 2022 04:38:49 GMT
- Title: A Correlation Information-based Spatiotemporal Network for Traffic Flow
Forecasting
- Authors: Weiguo Zhu, Yongqi Sun, Xintong Yi, Yan Wang
- Abstract summary: We propose a novel correlation information-basedtemporal network (CorrSTN) for predicting traffic patterns.
In particular, our model makes significant improvements compared with the latest model ASTGNN by 12.7%, 14.4% and 27.4% in the metrics of MAE, RMSE and MAPE, respectively.
- Score: 4.933291769305828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growth of transport modes, high traffic forecasting precision is
required in intelligent transportation systems. Most previous works utilize the
transformer architecture based on graph neural networks and attention
mechanisms to discover spatiotemporal dependencies and dynamic relationships.
The correlation information among spatiotemporal sequences, however, has not
been thoroughly considered. In this paper, we present two elaborate
spatiotemporal representations, spatial correlation information (SCorr) and
temporal correlation information (TCorr), among spatiotemporal sequences based
on the maximal information coefficient. Using SCorr, we propose a novel
correlation information-based spatiotemporal network (CorrSTN), including a
dynamic graph neural network component incorporating correlation information
into the spatial structure effectively and a multi-head attention component
utilizing spatial correlation information to extract dynamic temporal
dependencies accurately. Using TCorr, we further explore the correlation
pattern among different periodic data and then propose a novel data selection
scheme to identify the most relevant data. The experimental results on the
highway traffic flow (PEMS07 and PEMS08) and metro crowd flow (HZME inflow and
outflow) datasets demonstrate that CorrSTN outperforms the state-of-the-art
methods in terms of predictive performance. In particular, on the HZME
(outflow) dataset, our model makes significant improvements compared with the
latest model ASTGNN by 12.7%, 14.4% and 27.4% in the metrics of MAE, RMSE and
MAPE, respectively.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Spatiotemporal Forecasting of Traffic Flow using Wavelet-based Temporal Attention [3.049645421090079]
This paper proposes a wavelet-based temporal attention model, namely wavelet-based dynamic graph neural network (DS-DSNN) for tackling the traffic forecasting problem.
Our proposed ensemble method can better handle dynamic temporal and spatial benchmarks and make reliable long-term forecasts.
arXiv Detail & Related papers (2024-07-05T11:42:39Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Residual Graph Convolutional Recurrent Networks For Multi-step Traffic
Flow Forecasting [12.223433627287605]
We propose a new Spatial-temporal forecasting model, namely the Residual Graph Convolutional Recurrent Network (RGCRN)
The model uses our proposed Residual Graph Convolutional Network (ResGCN) to capture the fine-grained spatial correlation of the traffic road network.
Our comparative experimental results on two real datasets show that RGCRN improves on average by 20.66% compared to the best baseline model.
arXiv Detail & Related papers (2022-05-03T13:23:38Z) - DMGCRN: Dynamic Multi-Graph Convolution Recurrent Network for Traffic
Forecasting [7.232141271583618]
We propose a novel dynamic multi-graph convolution recurrent network (DMG) to tackle above issues.
We use the distance-based graph to capture spatial information from nodes are close in distance.
We also construct a novel latent graph which encoded the structure correlations among roads to capture spatial information from nodes are similar in structure.
arXiv Detail & Related papers (2021-12-04T06:51:55Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
We propose a novel deep learning model for traffic forecasting named inefficient-Context Spatio-Temporal Joint Linear Attention (SSTLA)
SSTLA applies linear attention to a joint graph to capture global dependence between alltemporal- nodes efficiently.
Experiments on two real-world traffic datasets, England and Temporal7, demonstrate that our STJLA can achieve 9.83% and 3.08% 3.08% accuracy in MAE measure over state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-04T06:39:18Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
We propose a Short-term Traffic flow Prediction framework so that transportation authorities take early actions to control flow and prevent congestion.
We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology.
We show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of various events that CV realistically encountered on segments along their trajectory.
arXiv Detail & Related papers (2020-07-10T16:00:44Z) - Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep
Learning Approach Considering Dynamic Non-Local Spatial Correlation and
Non-Stationary Temporal Dependency [6.019104024723682]
This research studies two particular problems in traffic forecasting: (1) capture the dynamic and non-local spatial correlation between traffic links and (2) model the dynamics of temporal dependency for accurate multiple steps ahead predictions.
We propose a deep learning framework named Spatial-Temporal Sequence to Sequence model (STSeq2Seq) to address these issues.
This model builds on sequence to sequence (seq2seq) architecture to capture temporal feature and relies on graph convolution for aggregating spatial information.
arXiv Detail & Related papers (2020-04-06T03:40:56Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.