論文の概要: Package Theft Detection from Smart Home Security Cameras
- arxiv url: http://arxiv.org/abs/2205.11804v1
- Date: Tue, 24 May 2022 05:54:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 14:28:06.470044
- Title: Package Theft Detection from Smart Home Security Cameras
- Title(参考訳): スマートホームセキュリティカメラからのパッケージ盗難検出
- Authors: Hung-Min Hsu, Xinyu Yuan, Baohua Zhu, Zhongwei Cheng and Lin Chen
- Abstract要約: 本稿では,Global and Local Fusion Package Theft Detection Embedding (GLF-PTDE) フレームワークを提案する。
提案手法は,提案したGLF-PTDEフレームワークの有効性とパッケージ盗難検出のための実環境におけるロバスト性を示すため,新たに提案したデータセット上で80%のAUC性能を実現する。
- 参考スコア(独自算出の注目度): 12.651733864270762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Package theft detection has been a challenging task mainly due to lack of
training data and a wide variety of package theft cases in reality. In this
paper, we propose a new Global and Local Fusion Package Theft Detection
Embedding (GLF-PTDE) framework to generate package theft scores for each
segment within a video to fulfill the real-world requirements on package theft
detection. Moreover, we construct a novel Package Theft Detection dataset to
facilitate the research on this task. Our method achieves 80% AUC performance
on the newly proposed dataset, showing the effectiveness of the proposed
GLF-PTDE framework and its robustness in different real scenes for package
theft detection.
- Abstract(参考訳): パッケージ盗難検出は、主にトレーニングデータの欠如と、さまざまなパッケージ盗難事例が現実にあるため、困難な課題となっている。
本稿では,ビデオ内の各セグメント毎のパッケージ盗難スコアを生成し,パッケージ盗難検出に関する現実世界の要件を満たすための,グローバルおよびローカルなフュージョンパッケージ盗難検出埋め込み(glf-ptde)フレームワークを提案する。
さらに,本研究を支援するために,新しいパッケージ盗難検出データセットを構築した。
提案手法は,提案したGLF-PTDEフレームワークの有効性とパッケージ盗難検出のための実環境におけるロバスト性を示すため,新たに提案したデータセット上で80%のAUC性能を実現する。
関連論文リスト
- PDSR: Efficient UAV Deployment for Swift and Accurate Post-Disaster Search and Rescue [2.367791790578455]
本稿では,PDSR(Post-Disaster Search and Rescue)のための包括的フレームワークを提案する。
この概念の中心は、多様なセンシング、通信、情報機能を備えたUAVスワムの迅速な展開である。
提案手法は従来の手法よりもはるかに高速に損傷領域の完全なカバレッジを実現することを目的としている。
論文 参考訳(メタデータ) (2024-10-30T12:46:15Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - OSR-ViT: A Simple and Modular Framework for Open-Set Object Detection and Discovery [16.055210504552406]
我々は、OODD(Open-Set Object Detection and Discovery)と呼ばれる新しいタスクを提案する。
提案するOpen-Set Regions with ViT features (OSR-ViT) Detection framework。
OSR-ViTは、クラスに依存しない提案ネットワークと強力なViTベースの分類器を組み合わせる。
論文 参考訳(メタデータ) (2024-04-16T19:29:27Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
本稿では,オープン環境におけるオブジェクト検出器の総合的なレビューと解析を行う。
データ/ターゲットの変化の次元に基づいて、4つの四分法(ドメイン外、カテゴリ外、堅牢な学習、漸進的な学習)を含むフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-24T19:32:39Z) - Malicious Package Detection using Metadata Information [0.272760415353533]
本稿では,メタデータに基づく悪意のあるパッケージ検出モデルであるMeMPtecを紹介する。
MeMPtecはパッケージメタデータ情報から一連の機能を抽出する。
実験の結果,偽陽性と偽陰性の両方が有意な減少を示した。
論文 参考訳(メタデータ) (2024-02-12T06:54:57Z) - TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns
for Intrusion Detection [0.5261718469769447]
既存のデータセットは、しばしば不足しており、必要な多様性と現在のネットワーク環境との整合性が欠如している。
本稿では,これらの課題を克服するための新しい包括的データセットであるTII-SSRC-23を紹介する。
論文 参考訳(メタデータ) (2023-09-14T05:23:36Z) - An Open Patch Generator based Fingerprint Presentation Attack Detection
using Generative Adversarial Network [3.5558308387389626]
自動指紋認識システム(AFRS)のセンサに本物の指紋の偽造を提示することによる脅威の一つに、提示攻撃(PA)または偽造(spoofing)がある。
本稿では、GAN(Generative Adversarial Network)を用いて、提案したOpen Patch Generator(OPG)から生成されたスプーフサンプルを用いてデータセットを増強するCNNベースの手法を提案する。
96.20%、94.97%、92.90%の精度は、それぞれLivDetプロトコルのシナリオの下で、LivDet 2015、2017、2019データベースで達成されている。
論文 参考訳(メタデータ) (2023-06-06T10:52:06Z) - Visible-Thermal UAV Tracking: A Large-Scale Benchmark and New Baseline [80.13652104204691]
本稿では,可視熱UAV追跡(VTUAV)のための高多様性の大規模ベンチマークを構築する。
本稿では, フレームレベルの属性を, チャレンジ固有のトラッカーの可能性を利用するための粗粒度属性アノテーションを提案する。
さらに,様々なレベルでRGB-Tデータを融合するHMFT(Hierarchical Multi-modal Fusion Tracker)という新しいRGB-Tベースラインを設計する。
論文 参考訳(メタデータ) (2022-04-08T15:22:33Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Detection in Crowded Scenes: One Proposal, Multiple Predictions [79.28850977968833]
混み合ったシーンにおける高過度なインスタンスを検出することを目的とした,提案手法によるオブジェクト検出手法を提案する。
このアプローチの鍵は、各提案が以前の提案ベースのフレームワークの1つではなく、関連したインスタンスのセットを予測できるようにすることです。
我々の検出器は、CrowdHumanデータセットの挑戦に対して4.9%のAPゲインを得ることができ、CityPersonsデータセットでは1.0%$textMR-2$の改善がある。
論文 参考訳(メタデータ) (2020-03-20T09:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。