論文の概要: Characterising Research Areas in the field of AI
- arxiv url: http://arxiv.org/abs/2205.13471v1
- Date: Thu, 26 May 2022 16:30:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-27 19:32:28.967294
- Title: Characterising Research Areas in the field of AI
- Title(参考訳): aiの分野における研究領域の特徴
- Authors: Alessandra Belfiore, Angelo Salatino, Francesco Osborne
- Abstract要約: トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interest in Artificial Intelligence (AI) continues to grow rapidly, hence it
is crucial to support researchers and organisations in understanding where AI
research is heading. In this study, we conducted a bibliometric analysis on
257K articles in AI, retrieved from OpenAlex. We identified the main conceptual
themes by performing clustering analysis on the co-occurrence network of
topics. Finally, we observed how such themes evolved over time. The results
highlight the growing academic interest in research themes like deep learning,
machine learning, and internet of things.
- Abstract(参考訳): 人工知能(AI)への関心は急速に高まり続けており、AI研究がどこに向かっているかを理解するために研究者や組織を支援することが不可欠である。
本研究では,openalexから検索したaiの257k記事の書誌分析を行った。
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主な概念テーマを特定した。
最後に,このようなテーマが時間とともにどのように進化するかを観察した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを表している。
関連論文リスト
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - AI Governance in the Context of the EU AI Act: A Bibliometric and Literature Review Approach [0.0]
本研究は、EU AI Actの枠組みにおけるAIガバナンスの研究動向を分析した。
我々の研究結果によると、特にEUのAI法で規制されているAIシステムに関するAIガバナンスの研究は、より広範なAI研究の状況と比較しても比較的限られている。
論文 参考訳(メタデータ) (2025-01-08T11:01:11Z) - Future of Information Retrieval Research in the Age of Generative AI [61.56371468069577]
情報検索(IR)の急速に発展する分野では、大規模言語モデル(LLM)のような生成AI技術の統合が、情報の検索やインタラクションの方法を変えつつある。
このパラダイムシフトを認識したビジョンワークショップが2024年7月に開催され、生成AI時代のIRの将来について議論した。
本報告は、潜在的に重要な研究トピックとしての議論の要約を含み、学術、産業実践家、機関、評価キャンペーン、資金提供機関の推薦リストを含む。
論文 参考訳(メタデータ) (2024-12-03T00:01:48Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
生成人工知能(AI)の現状と今後の動向について批判的考察
GoogleのGeminiや、予想されるOpenAI Q*プロジェクトといったイノベーションが、さまざまなドメインにわたる研究の優先順位とアプリケーションをどう変えているのかを調査した。
この研究は、倫理的および人間中心の手法をAI開発に取り入れることの重要性を強調し、社会規範と福祉の整合性を確保した。
論文 参考訳(メタデータ) (2023-12-18T01:11:39Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
近年、CHIコミュニティは人間中心のレスポンシブル人工知能の研究において著しい成長を遂げている。
この研究はすべて、人権と倫理に根ざしたまま、人類に利益をもたらすAIを開発し、AIの潜在的な害を減らすことを目的としている。
本研究グループでは,これらのトピックに関心のある学術・産業の研究者を集結させ,現在の研究動向と今後の研究動向を地図化することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T08:59:42Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
本章は, コンクリート材料用AI研究の主目的と知識構造を明らかにすることを目的としている。
まず、1990年から2020年にかけて発行された389の雑誌記事が、ウェブ・オブ・サイエンスから検索された。
キーワード共起分析やドキュメント共起分析などのサイエントメトリックツールを用いて,研究分野の特徴と特徴を定量化した。
論文 参考訳(メタデータ) (2022-09-17T18:24:56Z) - Researching Alignment Research: Unsupervised Analysis [14.699455652461726]
AIアライメント研究は、人工知能(AI)が人間に利益をもたらすことを保証することを目的としている。
このプロジェクトでは、既存のAIアライメント研究を収集、分析した。
フィールドは急速に成長しており、いくつかのサブフィールドが平行して出現している。
論文 参考訳(メタデータ) (2022-06-06T18:24:17Z) - On the Evolution of A.I. and Machine Learning: Towards a Meta-level
Measuring and Understanding Impact, Influence, and Leadership at Premier A.I.
Conferences [0.26999000177990923]
我々は、過去数十年間、AIと機械学習研究者の影響力、影響力、リーダーシップの分析を可能にする手段を提示する。
我々は,1969年に開催された第1回IJCAI(International Joint Conference on Artificial Intelligence)以降,AIと機械学習のフラッグシップカンファレンスで発表された論文について検討する。
論文 参考訳(メタデータ) (2022-05-26T03:41:12Z) - Systematic Mapping Study on the Machine Learning Lifecycle [4.4090257489826845]
2005年から2020年にかけて出版された405の出版物は、5つの主要な研究トピック、31のサブトピックにマップされています。
少数の出版物がデータ管理とモデル生産の問題に焦点を合わせており、より多くの研究が全体論的観点からAIライフサイクルに対処すべきであると考えている。
論文 参考訳(メタデータ) (2021-03-11T11:44:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。