論文の概要: Testing for Geometric Invariance and Equivariance
- arxiv url: http://arxiv.org/abs/2205.15280v1
- Date: Mon, 30 May 2022 17:43:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 14:48:32.171460
- Title: Testing for Geometric Invariance and Equivariance
- Title(参考訳): 幾何学的不変性と等分散の検定
- Authors: Louis G. Christie and John A. D. Aston
- Abstract要約: 本稿では、任意の半群$G$に対して$G$-等分散をテストするためのフレームワークを提案する。
このことは、対称性が事前に知られていないとき、そのようなモデルの使用に自信を与える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Invariant and equivariant models incorporate the symmetry of an object to be
estimated (here non-parametric regression functions $f : \mathcal{X}
\rightarrow \mathbb{R}$). These models perform better (with respect to $L^2$
loss) and are increasingly being used in practice, but encounter problems when
the symmetry is falsely assumed. In this paper we present a framework for
testing for $G$-equivariance for any semi-group $G$. This will give confidence
to the use of such models when the symmetry is not known a priori. These tests
are independent of the model and are computationally quick, so can be easily
used before model fitting to test their validity.
- Abstract(参考訳): 不変および同変モデルは、推定される対象の対称性(非パラメトリック回帰関数 $f : \mathcal{X} \rightarrow \mathbb{R}$)を組み込む。
これらのモデルは($L^2$損失に関して)より良く機能し、実際はますます使われているが、対称性が誤って仮定されたときに問題に遭遇している。
本稿では,任意の半群 $g$ に対して$g$-equivariance をテストするためのフレームワークを提案する。
これは、対称性が事前に分かっていない場合に、そのようなモデルの使用に自信を与える。
これらのテストはモデルとは独立であり、計算速度が速いため、モデル適合前に簡単にテストすることができる。
関連論文リスト
- Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models [65.71506381302815]
本稿では、$p(mathbfxmidmathbfy) propto p_theta(mathbfx)$ という形式の後続分布からサンプリングするコストを償却する。
多くのモデルと関心の制約に対して、ノイズ空間の後方はデータ空間の後方よりも滑らかであり、そのような償却推論に対してより快適である。
論文 参考訳(メタデータ) (2025-02-10T19:49:54Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Scaling Laws in Linear Regression: Compute, Parameters, and Data [86.48154162485712]
無限次元線形回帰セットアップにおけるスケーリング法則の理論について検討する。
テストエラーの再現可能な部分は$Theta(-(a-1) + N-(a-1)/a)$であることを示す。
我々の理論は経験的ニューラルスケーリング法則と一致し、数値シミュレーションによって検証される。
論文 参考訳(メタデータ) (2024-06-12T17:53:29Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - The Projected Covariance Measure for assumption-lean variable significance testing [3.8936058127056357]
単純だが一般的なアプローチは、線形モデルを指定し、次に$X$の回帰係数が 0 でないかどうかをテストすることである。
条件付き平均独立性のモデルフリーなnullをテストする問題、すなわち条件付き平均の$Y$$$X$と$Z$は$X$に依存しない。
本稿では,加法モデルやランダムフォレストなど,柔軟な非パラメトリックあるいは機械学習手法を活用可能な,シンプルで汎用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-03T17:55:50Z) - GRASP: A Goodness-of-Fit Test for Classification Learning [8.122270502556374]
標準測度であるにもかかわらず、平均精度は、特徴ベクトル(Y|X$)が与えられたラベルの基本的な条件法則にモデルを適合させるのに失敗する。
我々のフレームワークは条件付き法則$Y|X$のパラメトリックな仮定を一切行わず、クエリを通してのみアクセス可能なブラックボックスオラクルモデルとして扱う。
論文 参考訳(メタデータ) (2022-09-05T17:18:43Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
本稿ではランダム行列理論の手法を用いて、単純な線形回帰に対して理想的なトレーニング-テストデータ分割を求める。
それは「理想」を整合性計量を満たすものとして定義し、すなわち経験的モデル誤差は実際の測定ノイズである。
本論文は,任意のモデルのトレーニングとテストサイズを,真に最適な方法で解決した最初の論文である。
論文 参考訳(メタデータ) (2021-12-11T13:18:33Z) - On Misspecification in Prediction Problems and Robustness via Improper
Learning [23.64462813525688]
広い種類の損失関数とパラメトリック分布の族に対して、"プロパ"予測子をプレイしたことの後悔は、少なくとも$sqrtgamma n$として境界スケーリングを下げていることが示される。
パラメトリックファミリーの凸体で分布を再生する可能性のあるすべての学習者の家族にしても、これは改善できない例を示します。
論文 参考訳(メタデータ) (2021-01-13T17:54:08Z) - Estimating Stochastic Linear Combination of Non-linear Regressions
Efficiently and Scalably [23.372021234032363]
サブサンプルサイズが大きくなると、推定誤差が過度に犠牲になることを示す。
私たちの知る限りでは、線形テキスト+確率モデルが保証される最初の研究です。
論文 参考訳(メタデータ) (2020-10-19T07:15:38Z) - A new regret analysis for Adam-type algorithms [78.825194932103]
理論的には、オンライン凸最適化に対する後悔の保証は、急速に崩壊する$beta_1to0$スケジュールを必要とする。
最適なデータ依存リセット境界を一定の$beta_1$で導出できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-21T19:19:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。