論文の概要: FinBERT-MRC: financial named entity recognition using BERT under the
machine reading comprehension paradigm
- arxiv url: http://arxiv.org/abs/2205.15485v1
- Date: Tue, 31 May 2022 00:44:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 13:55:14.579184
- Title: FinBERT-MRC: financial named entity recognition using BERT under the
machine reading comprehension paradigm
- Title(参考訳): FinBERT-MRC:機械読解パラダイム下でのBERTを用いたファイナンシャルエンティティ認識
- Authors: Yuzhe Zhang and Hong Zhang
- Abstract要約: 我々はFinNERタスクを機械読解(MRC)問題として定式化し、FinBERT-MRCと呼ばれる新しいモデルを提案する。
この定式化は、よく設計されたクエリを利用して重要な事前情報を導入し、ターゲットエンティティの開始インデックスと終了インデックスを抽出する。
我々は,中国の財務データセットChFinAnnと実単語データセットAdminPunishについて実験を行った。
- 参考スコア(独自算出の注目度): 8.17576814961648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Financial named entity recognition (FinNER) from literature is a challenging
task in the field of financial text information extraction, which aims to
extract a large amount of financial knowledge from unstructured texts. It is
widely accepted to use sequence tagging frameworks to implement FinNER tasks.
However, such sequence tagging models cannot fully take advantage of the
semantic information in the texts. Instead, we formulate the FinNER task as a
machine reading comprehension (MRC) problem and propose a new model termed
FinBERT-MRC. This formulation introduces significant prior information by
utilizing well-designed queries, and extracts start index and end index of
target entities without decoding modules such as conditional random fields
(CRF). We conduct experiments on a publicly available Chinese financial dataset
ChFinAnn and a real-word bussiness dataset AdminPunish. FinBERT-MRC model
achieves average F1 scores of 92.78% and 96.80% on the two datasets,
respectively, with average F1 gains +3.94% and +0.89% over some sequence
tagging models including BiLSTM-CRF, BERT-Tagger, and BERT-CRF. The source code
is available at https://github.com/zyz0000/FinBERT-MRC.
- Abstract(参考訳): 文献からのファイナンシャルネームエンティティ認識(FinNER)は、構造化されていないテキストから大量の財務知識を抽出することを目的として、財務テキスト情報抽出の分野で難しい課題である。
FinNERタスクを実装するためにシーケンスタグフレームワークを使用することは広く受け入れられている。
しかし、このようなシーケンスタグ付けモデルは、テキストのセマンティック情報を完全に活用することはできない。
代わりに、FinNERタスクを機械読解(MRC)問題として定式化し、FinBERT-MRCと呼ばれる新しいモデルを提案する。
この定式化は、よく設計されたクエリを利用して重要な事前情報を導入し、条件付きランダムフィールド(CRF)のようなデコードモジュールを使わずに、ターゲットエンティティの開始インデックスと終了インデックスを抽出する。
我々は,中国における公開財務データセットChFinAnnと実単語バスネスデータセットAdminPunishで実験を行った。
FinBERT-MRCモデルは、平均F1スコアが92.78%、96.80%、平均F1スコアが+3.94%、+0.89%である。
ソースコードはhttps://github.com/zyz0000/FinBERT-MRCで入手できる。
関連論文リスト
- Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
大規模言語モデル(LLM)は高度な金融アプリケーションを持っているが、十分な財務知識がなく、テーブルや時系列データといったマルチモーダル入力に関わるタスクに苦労することが多い。
我々は、総合的な財務知識をテキスト、テーブル、時系列データに組み込む一連の金融LLMであるtextitOpen-FinLLMsを紹介する。
また、複雑な財務データ型を扱うために、1.43Mの画像テキスト命令で訓練されたマルチモーダルLLMであるFinLLaVAについても紹介する。
論文 参考訳(メタデータ) (2024-08-20T16:15:28Z) - SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
大規模言語モデル (LLM) は、金融業界において自然言語処理を推進するための強力なツールとなっている。
SNFinLLMという中国の金融ドメイン向けに設計された新しい大規模言語モデルを提案する。
SNFinLLMは、質問への回答、財務調査レポートの要約、感情の分析、財務計算の実行など、ドメイン固有のタスクに優れています。
論文 参考訳(メタデータ) (2024-08-05T08:24:24Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Enhancing Language Models for Financial Relation Extraction with Named Entities and Part-of-Speech [5.104305392215512]
FinREタスクは、ファイナンシャルステートメント/テキストの一部が与えられたエンティティとそれらの関係を識別する。
名前付きエンティティ認識 (NER) とPart-Of-Speech (POS) を併用することで、事前学習言語モデルの性能を向上させる戦略を提案する。
金融関係データセットの実験は有望な結果を示し、既存のモデルにNERとPOSを組み込むことの利点を強調している。
論文 参考訳(メタデータ) (2024-05-02T14:33:05Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - CFGPT: Chinese Financial Assistant with Large Language Model [21.54229667774752]
CFGPTと命名された中国の金融生成事前学習型トランスフォーマフレームワークを提案する。
CFDataは、事前トレーニングデータセットと教師付き微調整データセットの両方で構成されている。
CFLLMはCFDataで2段階の訓練を受け、事前訓練と微調整を継続する。
論文 参考訳(メタデータ) (2023-09-19T14:34:01Z) - FinGPT: Democratizing Internet-scale Data for Financial Large Language
Models [35.83244096535722]
大型言語モデル (LLM) は、人間に似たテキストの理解と生成に顕著な熟練性を示した。
ファイナンシャル・ジェネレーティブ・プレトレーニング・トランスフォーマー(FinGPT)は、インターネット上の34の多様なソースからリアルタイムの財務データの収集とキュレーションを自動化する。
FinGPTは、FinLLMを民主化し、イノベーションを刺激し、オープンファイナンスにおける新たな機会を開放することを目指している。
論文 参考訳(メタデータ) (2023-07-19T22:43:57Z) - FinGPT: Open-Source Financial Large Language Models [20.49272722890324]
我々は金融セクター向けのオープンソースの大規模言語モデルFinGPTを提案する。
プロプライエタリなモデルとは異なり、FinGPTはデータ中心のアプローチを採用し、研究者や実践者にアクセスしやすく透明なリソースを提供する。
ロボアドバイス,アルゴリズムトレーディング,ローコード開発など,ユーザにとってのステップストーンとして,潜在的な応用例をいくつか紹介する。
論文 参考訳(メタデータ) (2023-06-09T16:52:00Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。