Defining Quantum Games
- URL: http://arxiv.org/abs/2206.00089v5
- Date: Thu, 23 Jan 2025 14:22:17 GMT
- Title: Defining Quantum Games
- Authors: Laura Piispanen, Marcel Pfaffhauser, James Wootton, Julian Togelius, Annakaisa Kultima,
- Abstract summary: We define a quantum game as any type of rule-based game that either employs the principles of quantum physics or references quantum phenomena or the theory of quantum physics through any of three proposed dimensions.
Various games explore quantum physics and quantum computing through digital, analogue, and hybrid means, with various incentives driving their development.
- Score: 1.9922905420195367
- License:
- Abstract: In this research article, we survey existing quantum physics-related games and, based on this survey, propose a definition for the concept of quantum games. We define a quantum game as any type of rule-based game that either employs the principles of quantum physics or references quantum phenomena or the theory of quantum physics through any of three proposed dimensions: the perceivable dimension of quantum physics, the dimension of quantum technologies, and the dimension of scientific purposes, such as citizen science or education. We also discuss the concept of quantum computer games, which are games on quantum computers, as well as definitions for the concept of science games. Various games explore quantum physics and quantum computing through digital, analogue, and hybrid means, with various incentives driving their development. As interest in games as educational tools for supporting quantum literacy grows, understanding the diverse landscape of quantum games becomes increasingly important. We propose that the three dimensions of quantum games identified in this article be used for designing, analysing, and defining the phenomenon of quantum games.
Related papers
- Citizen Science Games on the Timeline of Quantum Games [0.0]
The article points to existing design guides for citizen science quantum games and views future prospects of citizen science projects and quantum games through collaborative endeavours.
We observe that the current landscape of quantum games is shaped by three distinct driving forces: the serious application of games, the evolution of quantum computers, and open game development events such as textitQuantum Game Jams.
arXiv Detail & Related papers (2025-02-13T10:52:45Z) - The History of Quantum Games [0.0]
We collect over 260 quantum games ranging from commercial games, applied and serious games, and games that have been developed at quantum themed game jams and educational courses.
We provide an overview of the journey of quantum games across three dimensions.
arXiv Detail & Related papers (2023-09-04T11:10:58Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Is there evidence for exponential quantum advantage in quantum
chemistry? [45.33336180477751]
The idea to use quantum mechanical devices to simulate other quantum systems is commonly ascribed to Feynman.
It may be prudent to assume exponential speedups are not generically available for this problem.
arXiv Detail & Related papers (2022-08-03T16:33:57Z) - Quantum Extensive Form Games [0.0]
We propose a concept of quantum extensive-form games, which is a quantum extension of classical extensive-form games.
A quantum extensive-form game is also a generalization of quantum learning, including Quantum Generative Adrial Networks.
arXiv Detail & Related papers (2022-07-12T09:58:21Z) - Endless Fun in high dimensions -- A Quantum Card Game [0.0]
We present a strategic card game in which the building blocks of a quantum computer can be experienced.
While playing, participants start with the lowest quantum state, play cards to "program" a quantum computer, and aim to achieve the highest possible quantum state.
By also including high-dimensional quantum states, i.e., systems that can take more than two possible values, the game can help the players to understand complex quantum state operations.
arXiv Detail & Related papers (2021-07-26T07:52:13Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - On quantum neural networks [91.3755431537592]
We argue that the concept of a quantum neural network should be defined in terms of its most general function.
Our reasoning is based on the use of the Feynman path integral formulation in quantum mechanics.
arXiv Detail & Related papers (2021-04-12T18:30:30Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Information for Particle Theorists [0.0]
Lectures given at the Theoretical Advanced Study Institute (TASI 2020), 1-26 June 2020.
The topics covered include quantum circuits, entanglement, quantum teleportation, Bell inequalities, quantum entropy and decoherence.
Links to a Python notebook and Mathematica notebooks will allow the reader to reproduce and extend the calculations, as well as perform five experiments on a quantum simulator.
arXiv Detail & Related papers (2020-10-06T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.