Learnability and Complexity of Quantum Samples
- URL: http://arxiv.org/abs/2010.11983v1
- Date: Thu, 22 Oct 2020 18:45:25 GMT
- Title: Learnability and Complexity of Quantum Samples
- Authors: Murphy Yuezhen Niu, Andrew M. Dai, Li Li, Augustus Odena, Zhengli
Zhao, Vadim Smelyanskyi, Hartmut Neven, and Sergio Boixo
- Abstract summary: Given a quantum circuit, a quantum computer can sample the output distribution exponentially faster in the number of bits than classical computers.
Can we learn the underlying quantum distribution using models with training parameters that scale in n under a fixed training time?
We study four kinds of generative models: Deep Boltzmann machine (DBM), Generative Adrial Networks (GANs), Long Short-Term Memory (LSTM) and Autoregressive GAN, on learning quantum data set generated by deep random circuits.
- Score: 26.425493366198207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a quantum circuit, a quantum computer can sample the output
distribution exponentially faster in the number of bits than classical
computers. A similar exponential separation has yet to be established in
generative models through quantum sample learning: given samples from an
n-qubit computation, can we learn the underlying quantum distribution using
models with training parameters that scale polynomial in n under a fixed
training time? We study four kinds of generative models: Deep Boltzmann machine
(DBM), Generative Adversarial Networks (GANs), Long Short-Term Memory (LSTM)
and Autoregressive GAN, on learning quantum data set generated by deep random
circuits. We demonstrate the leading performance of LSTM in learning quantum
samples, and thus the autoregressive structure present in the underlying
quantum distribution from random quantum circuits. Both numerical experiments
and a theoretical proof in the case of the DBM show exponentially growing
complexity of learning-agent parameters required for achieving a fixed accuracy
as n increases. Finally, we establish a connection between learnability and the
complexity of generative models by benchmarking learnability against different
sets of samples drawn from probability distributions of variable degrees of
complexities in their quantum and classical representations.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Copula-based Risk Aggregation with Trapped Ion Quantum Computers [1.541403735141431]
Copulas are mathematical tools for modeling joint probability distributions.
Recent finding that copulas can be expressed as maximally entangled quantum states has revealed a promising approach to practical quantum advantages.
We study the training of QCBMs with different levels of precision and circuit design on a simulator and a state-of-the-art trapped ion quantum computer.
arXiv Detail & Related papers (2022-06-23T18:39:30Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Protocols for Trainable and Differentiable Quantum Generative Modelling [21.24186888129542]
We propose an approach for learning probability distributions as differentiable quantum circuits (DQC)
We perform training of a DQC-based model, where data is encoded in a latent space with a phase feature map, followed by a variational quantum circuit.
This allows fast sampling from parametrized distributions using a single-shot readout.
arXiv Detail & Related papers (2022-02-16T18:55:48Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Noise robustness and experimental demonstration of a quantum generative
adversarial network for continuous distributions [0.5249805590164901]
We numerically simulate the noisy hybrid quantum generative adversarial networks (HQGANs) to learn continuous probability distributions.
We also investigate the effect of different parameters on the training time to reduce the computational scaling of the algorithm.
Our results pave the way for experimental exploration of different quantum machine learning algorithms on noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2020-06-02T23:14:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.