論文の概要: Universal Photometric Stereo Network using Global Lighting Contexts
- arxiv url: http://arxiv.org/abs/2206.02452v1
- Date: Mon, 6 Jun 2022 09:32:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 17:21:41.526506
- Title: Universal Photometric Stereo Network using Global Lighting Contexts
- Title(参考訳): グローバル照明コンテキストを用いたユニバーサル測光ステレオネットワーク
- Authors: Satoshi Ikehata
- Abstract要約: 本論文は、ユニバーサル測光ステレオと呼ばれる新しい測光ステレオタスクに取り組む。
様々な形状や素材の物体に対して、特定のモデルを仮定することなく、任意の照明のバリエーションで機能することが想定されている。
- 参考スコア(独自算出の注目度): 4.822598110892846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles a new photometric stereo task, named universal photometric
stereo. Unlike existing tasks that assumed specific physical lighting models;
hence, drastically limited their usability, a solution algorithm of this task
is supposed to work for objects with diverse shapes and materials under
arbitrary lighting variations without assuming any specific models. To solve
this extremely challenging task, we present a purely data-driven method, which
eliminates the prior assumption of lighting by replacing the recovery of
physical lighting parameters with the extraction of the generic lighting
representation, named global lighting contexts. We use them like lighting
parameters in a calibrated photometric stereo network to recover surface normal
vectors pixelwisely. To adapt our network to a wide variety of shapes,
materials and lightings, it is trained on a new synthetic dataset which
simulates the appearance of objects in the wild. Our method is compared with
other state-of-the-art uncalibrated photometric stereo methods on our test data
to demonstrate the significance of our method.
- Abstract(参考訳): 本論文は、ユニバーサル測光ステレオと呼ばれる新しい測光ステレオタスクに取り組む。
特定の物理照明モデルを想定した既存のタスクとは異なり、このタスクの解法アルゴリズムは、特定のモデルを仮定せずに、任意の照明変動の下で様々な形状や材料を持つオブジェクトに対して動作する。
この極めて困難な課題を解決するために,物理的な照明パラメータの回復を,グローバル照明コンテキストと呼ばれる一般的な照明表現の抽出に置き換えることで,事前の照明仮定を解消する純粋データ駆動方式を提案する。
我々は、偏光ステレオネットワークの照明パラメータのように、表面の正規ベクトルを画素的に復元する。
ネットワークを様々な形状、材料、照明に適応させるために、野生の物体の出現をシミュレートする新しい合成データセットをトレーニングします。
本手法は,本手法の意義を実証するために,テストデータ上の非校正光度ステレオ法と比較した。
関連論文リスト
- LIPIDS: Learning-based Illumination Planning In Discretized (Light) Space for Photometric Stereo [19.021200954913475]
光度ステレオは、被写体の異なる照明画像から画素当たりの表面正規値を得るための強力な方法である。
照明の方向が多すぎるため、最適な設定を見つけることは困難である。
LIPIDS(Learning-based Illumination Planning in Discretized Light Space)を紹介する。
論文 参考訳(メタデータ) (2024-09-01T09:54:16Z) - MERLiN: Single-Shot Material Estimation and Relighting for Photometric Stereo [26.032964551717548]
光度ステレオは通常、表面の正常を正確に回復するために複数の光源を含む複雑なデータ取得装置を必要とする。
MERLiNは、単一の画像ベースの逆レンダリングとリライトを単一の統合フレームワークに統合したアテンションベースの時間ガラスネットワークである。
論文 参考訳(メタデータ) (2024-09-01T09:32:03Z) - Deep Learning Methods for Calibrated Photometric Stereo and Beyond [86.57469194387264]
光度ステレオは、さまざまなシェーディングキューを持つ複数の画像から物体の表面の正常性を回復する。
深層学習法は、非ランベルト面に対する測光ステレオの文脈において強力な能力を示している。
論文 参考訳(メタデータ) (2022-12-16T11:27:44Z) - A CNN Based Approach for the Point-Light Photometric Stereo Problem [26.958763133729846]
本稿では、遠距離場光度ステレオにおける深部ニューラルネットワークの最近の改良を活用して、現実的な仮定を処理できるCNNベースのアプローチを提案する。
われわれのアプローチは、DiLiGenT実世界のデータセットの最先端よりも優れている。
近距離点光源PSデータに対する我々のアプローチの性能を測定するため、LUCESを「近距離点光のための最初の実世界のデータセット」として紹介する。
論文 参考訳(メタデータ) (2022-10-10T12:57:12Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
本稿では3次元オブジェクト再構成のための非校正光度ステレオの課題に取り組む。
本研究では,物体形状,光方向,光強度を協調的に最適化する手法を提案する。
本手法は,実世界のデータセット上での光推定と形状復元における最先端の精度を示す。
論文 参考訳(メタデータ) (2022-07-16T02:46:15Z) - LUCES: A Dataset for Near-Field Point Light Source Photometric Stereo [30.31403197697561]
LUCESは, 様々な素材の14個のオブジェクトからなる, 近距離Ld点光のための最初の実世界のデータセットである。
52個のLEDを計る装置は、カメラから10から30cm離れた位置にある各物体に点灯するように設計されている。
提案するデータセットにおける最新の近接場測光ステレオアルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-04-27T12:30:42Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z) - GMLight: Lighting Estimation via Geometric Distribution Approximation [86.95367898017358]
本稿では,効率的な照明推定のための回帰ネットワークと生成プロジェクタを用いた照明推定フレームワークを提案する。
幾何学的な光の分布、光強度、周囲条件、および補助深さの点から照明シーンをパラメータ化し、純粋な回帰タスクとして推定します。
推定照明パラメータを用いて、生成プロジェクタはパノラマ照明マップを現実的な外観と周波数で合成する。
論文 参考訳(メタデータ) (2021-02-20T03:31:52Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
本稿では,測光ステレオ問題に対する無補間深層ニューラルネットワークフレームワークを提案する。
既存のニューラルネットワークベースの方法は、物体の正確な光方向または接地正則のいずれかまたは両方を必要とします。
本稿では,この問題に対する未調整の神経逆レンダリング手法を提案する。
論文 参考訳(メタデータ) (2020-12-12T10:33:08Z) - Light Stage Super-Resolution: Continuous High-Frequency Relighting [58.09243542908402]
光ステージから採取した人間の顔の「超解像」を学習ベースで解析する手法を提案する。
本手法では,ステージ内の隣接する照明に対応する撮像画像を集約し,ニューラルネットワークを用いて顔の描画を合成する。
我々の学習モデルは、リアルな影と特異なハイライトを示す任意の光方向のレンダリングを生成することができる。
論文 参考訳(メタデータ) (2020-10-17T23:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。