論文の概要: A Transparency Index Framework for AI in Education
- arxiv url: http://arxiv.org/abs/2206.03220v1
- Date: Mon, 9 May 2022 10:10:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-13 00:10:04.486976
- Title: A Transparency Index Framework for AI in Education
- Title(参考訳): 教育におけるAIのための透明性指標フレームワーク
- Authors: Muhammad Ali Chaudhry, Mutlu Cukurova, Rose Luckin
- Abstract要約: この研究の主な貢献は、AIを活用した教育技術開発における透明性の重要性を強調することである。
我々は、透明性が、解釈可能性、説明可能性、安全性などの教育における他の倫理的AI次元の実装を可能にすることを実証する。
- 参考スコア(独自算出の注目度): 1.776308321589895
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Numerous AI ethics checklists and frameworks have been proposed focusing on
different dimensions of ethical AI such as fairness, explainability, and
safety. Yet, no such work has been done on developing transparent AI systems
for real-world educational scenarios. This paper presents a Transparency Index
framework that has been iteratively co-designed with different stakeholders of
AI in education, including educators, ed-tech experts, and AI practitioners. We
map the requirements of transparency for different categories of stakeholders
of AI in education and demonstrate that transparency considerations are
embedded in the entire AI development process from the data collection stage
until the AI system is deployed in the real world and iteratively improved. We
also demonstrate how transparency enables the implementation of other ethical
AI dimensions in Education like interpretability, accountability, and safety.
In conclusion, we discuss the directions for future research in this newly
emerging field. The main contribution of this study is that it highlights the
importance of transparency in developing AI-powered educational technologies
and proposes an index framework for its conceptualization for AI in education.
- Abstract(参考訳): 多くのAI倫理チェックリストとフレームワークが、公正性、説明可能性、安全性といった倫理的AIのさまざまな側面に焦点を当てて提案されている。
しかし、現実世界の教育シナリオのために透明なaiシステムを開発する作業は行われていない。
本稿では、教育におけるAIの様々な利害関係者と反復的に共同設計された透明性指標フレームワークを提案する。
教育におけるAIの利害関係者のさまざまなカテゴリに対する透明性の要件をマップし、データ収集段階からAIシステムが現実世界にデプロイされ、反復的に改善されるまで、透明性の考慮事項がAI開発プロセス全体に組み込まれていることを示す。
また、透明性が、解釈可能性、説明責任、安全性など、他の倫理的なai次元を教育においてどのように実装できるかを実証する。
この新たな分野における今後の研究の方向性について論じる。
この研究の主な貢献は、AIを活用した教育技術開発における透明性の重要性を強調し、教育におけるAIの概念化のための指標フレームワークを提案することである。
関連論文リスト
- Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
Particip-AIは、現在および将来のAIユースケースと、非専門家から損害と利益を収集するフレームワークである。
人口統計学的に多様な参加者295名から回答を得た。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Responsible Artificial Intelligence: A Structured Literature Review [0.0]
EUは最近、AIへの信頼の必要性を強調するいくつかの出版物を公表した。
これは国際規制の緊急の必要性を浮き彫りにする。
本稿は、私たちの知る限り、責任あるAIの最初の統一された定義を包括的かつ包括的に紹介する。
論文 参考訳(メタデータ) (2024-03-11T17:01:13Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - A Vision for Operationalising Diversity and Inclusion in AI [5.4897262701261225]
本研究は,AIエコシステムにおける多様性と包摂性(D&I)の倫理的命令の運用を想定することを目的とする。
AI開発における重要な課題は、D&Iの原則を効果的に運用することである。
本稿では,ジェネレーティブAI(GenAI)を用いたペルソナシミュレーションを活用したツール開発のためのフレームワークの構想を提案する。
論文 参考訳(メタデータ) (2023-12-11T02:44:39Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
マルチモーダル人工知能(AI)アプローチは、教育的文脈における人工知能(AGI)の実現に向けた道を歩んでいる。
この研究は、認知フレームワーク、高度な知識表現、適応学習機構、多様なマルチモーダルデータソースの統合など、AGIの重要な側面を深く掘り下げている。
本稿は、AGI開発における今後の方向性と課題に関する洞察を提供する、教育におけるマルチモーダルAIの役割の意味についても論じる。
論文 参考訳(メタデータ) (2023-12-10T23:32:55Z) - Path To Gain Functional Transparency In Artificial Intelligence With
Meaningful Explainability [0.0]
AIシステムがますます高度化するにつれて、透明性と説明可能性の確保が重要になる。
透明なシステムにおけるユーザ中心のコンプライアンス・バイ・デザイン透過性の設計を提案する。
AIシステムにおける透明性に関連する課題を包括的に理解することで、説明責任、信頼性、社会的価値に整合したAIシステムの開発を促進することを目指している。
論文 参考訳(メタデータ) (2023-10-13T04:25:30Z) - Ethical Framework for Harnessing the Power of AI in Healthcare and
Beyond [0.0]
この総合的な研究論文は、AI技術の急速な進化と密接に関連する倫理的次元を厳格に調査する。
この記事の中心は、透明性、エクイティ、回答可能性、人間中心の指向といった価値を、慎重に強調するために作られた、良心的なAIフレームワークの提案である。
この記事は、グローバルに標準化されたAI倫理の原則とフレームワークに対するプレッシャーの必要性を明確に強調している。
論文 参考訳(メタデータ) (2023-08-31T18:12:12Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。