論文の概要: Combining Monte-Carlo Tree Search with Proof-Number Search
- arxiv url: http://arxiv.org/abs/2206.03965v1
- Date: Wed, 8 Jun 2022 15:28:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-09 13:58:31.177346
- Title: Combining Monte-Carlo Tree Search with Proof-Number Search
- Title(参考訳): モンテカルロ木探索と証明数探索の組み合わせ
- Authors: Elliot Doe and Mark H. M. Winands and Dennis J. N. J. Soemers and
Cameron Browne
- Abstract要約: Proof-Number Search (PNS) と Monte-Carlo Tree Search (MCTS) は様々なゲームにおいて意思決定に成功している。
本稿では,この2つの木探索手法を組み合わせたPN-MCTSという新しい手法を提案する。
実験の結果、PN-MCTSはLines of Action、MiniShogi、Knightthrough、Awariなどいくつかのゲームで基本MCTSを上回っ、94.0%の勝利率を記録した。
- 参考スコア(独自算出の注目度): 5.354801701968199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proof-Number Search (PNS) and Monte-Carlo Tree Search (MCTS) have been
successfully applied for decision making in a range of games. This paper
proposes a new approach called PN-MCTS that combines these two tree-search
methods by incorporating the concept of proof and disproof numbers into the UCT
formula of MCTS. Experimental results demonstrate that PN-MCTS outperforms
basic MCTS in several games including Lines of Action, MiniShogi,
Knightthrough, and Awari, achieving win rates up to 94.0%.
- Abstract(参考訳): Proof-Number Search (PNS) と Monte-Carlo Tree Search (MCTS) は様々なゲームにおいて意思決定に成功している。
本稿では,この2つの木探索手法を組み合わせたPN-MCTSという新しい手法を提案する。
実験の結果、PN-MCTSはLines of Action、MiniShogi、Knightthrough、Awariなどいくつかのゲームで基本MCTSを上回っ、94.0%の勝利率を記録した。
関連論文リスト
- LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
マルチエージェントパスフィンディングに適したモンテカルロ木探索(MCTS)のオリジナル版を紹介する。
具体的には,エージェントの目標達成行動を支援するために,個別の経路を用いる。
また,木探索手順の分岐係数を低減するために,専用の分解手法を用いる。
論文 参考訳(メタデータ) (2023-07-25T12:33:53Z) - Combining Monte Carlo Tree Search and Heuristic Search for Weighted
Vertex Coloring [15.308312172985486]
本研究は,モンテカルロ木探索法(MCTS)と重み付き頂点色問題(Weighted Vertex Coloring Problem)の解法について検討する。
基本MCTSアルゴリズムに加えて,従来のランダムシミュレーションを他のシミュレーション手法に置き換えたいくつかの変種について検討する。
我々は、これらの組み合わせMCTSの変種を評価するために、よく知られたベンチマークインスタンスの実験を行う。
論文 参考訳(メタデータ) (2023-04-24T14:50:33Z) - Proof Number Based Monte-Carlo Tree Search [1.93674821880689]
本稿では,モンテカルロ木探索(MCTS)とProof-Number Search(PNS)を組み合わせた新しいゲーム検索アルゴリズムであるPN-MCTSを提案する。
本研究は,MCTS木に蓄積された証明値と防腐数から得られる付加的な知識を活用可能な3つの領域を定義する。
実験の結果、PN-MCTSは全てのテストされたゲーム領域でMCTSを上回り、ライン・オブ・アクションで96.2%の勝利率を達成した。
論文 参考訳(メタデータ) (2023-03-16T16:27:07Z) - Continuous Monte Carlo Graph Search [61.11769232283621]
連続モンテカルログラフサーチ(Continuous Monte Carlo Graph Search, CMCGS)は、モンテカルログラフサーチ(MCTS)のオンラインプランニングへの拡張である。
CMCGSは、計画中、複数の州で同じ行動方針を共有することで高いパフォーマンスが得られるという洞察を生かしている。
並列化によってスケールアップすることができ、学習力学モデルによる連続制御においてクロスエントロピー法(CEM)よりも優れている。
論文 参考訳(メタデータ) (2022-10-04T07:34:06Z) - Monte Carlo Tree Search for high precision manufacturing [55.60116686945561]
我々は、専門家ベースのシミュレータを使用し、MCTSのデフォルトポリシーを適用して製造プロセスに対処する。
一般的な理由は、プロセスの効率的なシミュレータが存在しないことや、MCTSをプロセスの複雑な規則に適用する際の問題があることである。
論文 参考訳(メタデータ) (2021-07-28T14:56:17Z) - Prioritized Architecture Sampling with Monto-Carlo Tree Search [54.72096546595955]
ワンショットニューラルアーキテクチャサーチ(NAS)法は,検索空間全体を1つのネットワークとして考えることにより,検索コストを大幅に削減する。
本稿では,モンテカルロ木(MCT)をモデルとした探索空間を用いたモンテカルロ木探索(MCTS)に基づくサンプリング戦略について紹介する。
公平な比較のために、CIFAR-10で評価されたマクロ検索空間、すなわちNAS-Bench-MacroのオープンソースNASベンチマークを構築する。
論文 参考訳(メタデータ) (2021-03-22T15:09:29Z) - Dual Monte Carlo Tree Search [0.0]
我々はDual MCTSが、様々な対称ゲームや非対称ゲームにおいて最も広く使われているニューラルMCTSアルゴリズムであるAlphaZeroよりも優れていることを示す。
デュアルMCTSは、2つの異なる検索木、単一のディープニューラルネットワーク、PUCB、スライドウィンドウ、およびepsilon-greedyアルゴリズムの組み合わせを使用して検索木のための新しい更新技術を使用しています。
論文 参考訳(メタデータ) (2021-03-21T23:34:11Z) - Monte Carlo Tree Search: A Review of Recent Modifications and
Applications [0.17205106391379024]
モンテカルロツリー検索(MCTS)は、ゲームプレイボットを設計したり、連続的な決定問題を解決するための強力なアプローチです。
この方法は、探索と搾取のバランスをとるインテリジェントな木探索に依存している。
しかし、この方法はより複雑なゲームでは最先端の技術となっている。
論文 参考訳(メタデータ) (2021-03-08T17:44:15Z) - Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search [66.34387649910046]
モンテカルロ木探索(MCTS)は、囲碁やアタリゲームなど多くの領域で最先端の結果を得た。
我々は,現在の検索状況の不確かさを予測し,その結果を用いて検索をやめるべきかどうかを判断することで,この目標を達成することを提案する。
論文 参考訳(メタデータ) (2020-12-14T19:49:25Z) - Playing Carcassonne with Monte Carlo Tree Search [0.0]
我々は,モンテカルロ木探索 (MCTS) とラピッドアクション値推定 (MCTS-RAVE) をカーカッソンヌのゲームで使用することを検討した。
MCTSをベースとした手法とStar2.5アルゴリズムの長所を比較し,カーカッソンヌのゲームにおける競争結果が得られたことを報告した。
論文 参考訳(メタデータ) (2020-09-27T22:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。