論文の概要: Sort by Structure: Language Model Ranking as Dependency Probing
- arxiv url: http://arxiv.org/abs/2206.04935v1
- Date: Fri, 10 Jun 2022 08:10:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-13 15:15:02.065925
- Title: Sort by Structure: Language Model Ranking as Dependency Probing
- Title(参考訳): 構造によるソート:言語モデルランキングと依存性調査
- Authors: Max M\"uller-Eberstein, Rob van der Goot and Barbara Plank
- Abstract要約: 事前学習型言語モデル (LM) のインフォームドな選択は、性能上重要であるが、環境上はコストがかかる。
本稿では,LMの文脈的埋め込みからラベル付き木が回復可能な程度を計測することにより,特定の言語における依存関係を解析するために,LMのランク付けを提案する。
本手法は,46のタイプ的およびアーキテクチャ的に多様なLM言語対に対して,計算量の少ない命令の79%のLM選択を,計算量の少ない命令のフルグレードのトレーニングよりも最適に予測する。
- 参考スコア(独自算出の注目度): 25.723591566201343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Making an informed choice of pre-trained language model (LM) is critical for
performance, yet environmentally costly, and as such widely underexplored. The
field of Computer Vision has begun to tackle encoder ranking, with promising
forays into Natural Language Processing, however they lack coverage of
linguistic tasks such as structured prediction. We propose probing to rank LMs,
specifically for parsing dependencies in a given language, by measuring the
degree to which labeled trees are recoverable from an LM's contextualized
embeddings. Across 46 typologically and architecturally diverse LM-language
pairs, our probing approach predicts the best LM choice 79% of the time using
orders of magnitude less compute than training a full parser. Within this
study, we identify and analyze one recently proposed decoupled LM - RemBERT -
and find it strikingly contains less inherent dependency information, but often
yields the best parser after full fine-tuning. Without this outlier our
approach identifies the best LM in 89% of cases.
- Abstract(参考訳): 事前学習型言語モデル (LM) のインフォームドな選択は、性能上重要であるが、環境上はコストがかかる。
コンピュータビジョンの分野は、自然言語処理への有望な進出とともにエンコーダのランク付けに取り組み始めているが、構造化予測のような言語的タスクはカバーしていない。
本稿では,LMの文脈的埋め込みからラベル付き木が回復可能な程度を計測することにより,特定の言語における依存関係を解析するために,LMのランク付けを提案する。
46の類型的およびアーキテクチャ的に多様なLM言語ペアに対して,提案手法は,フルパーサのトレーニングよりも計算量が桁違いに少ないため,最高のLM選択を79%の時間で予測する。
この研究の中で、最近提案されている分離lm(rembert and find it)の同定と解析を行い、固有の依存関係情報が少ないことが分かりました。
このアウトリーチがなければ、私たちのアプローチは89%のケースで最高のLMを特定します。
関連論文リスト
- Language Models and Cycle Consistency for Self-Reflective Machine Translation [1.79487674052027]
我々は、ソース言語Aからターゲット言語Bへの複数の翻訳候補を生成し、その後、これらの候補を元の言語Aに翻訳する。
トークンレベルの精度や精度などの指標を用いて、原文と裏文の周期一貫性を評価することにより、言語Bの翻訳品質を暗黙的に推定する。
各原文に対して、翻訳候補を、原文と最適なサイクル整合性で同定し、最終回答とする。
論文 参考訳(メタデータ) (2024-11-05T04:01:41Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - BEAR: A Unified Framework for Evaluating Relational Knowledge in Causal and Masked Language Models [2.2863439039616127]
調査は、言語モデル(LM)が事前学習中に関係知識を習得した度合いを評価する。
従来のアプローチは、事前学習するLMで使用される目的関数に依存していた。
本稿では,ある文章文のログ類似度を推定する,LM固有の能力を利用する手法を提案する。
論文 参考訳(メタデータ) (2024-04-05T14:13:55Z) - The Consensus Game: Language Model Generation via Equilibrium Search [73.51411916625032]
言語モデル復号のための学習不要なゲーム理論を新たに導入する。
本手法では,正規化不完全情報シーケンシャルシグナリングゲームとして,言語モデルの復号化を行う。
EQUILIBRium-RANKINGをLLaMA-7Bに適用すると、より大型のLLaMA-65BとPaLM-540Bより優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-13T14:27:21Z) - LeTI: Learning to Generate from Textual Interactions [60.425769582343506]
本稿では,テキストインタラクション(LETI)から学習するLMの可能性を,バイナリラベルによる正当性をチェックするだけでなく,テキストフィードバックを通じて出力中のエラーをピンポイントし,説明する。
私たちの焦点はコード生成タスクであり、そこではモデルが自然言語命令に基づいてコードを生成する。
LETIは、目的のLMを用いて、自然言語命令、LM生成プログラム、テキストフィードバックの結合に基づいて、モデルを反復的に微調整する。
論文 参考訳(メタデータ) (2023-05-17T15:53:31Z) - Multilingual Syntax-aware Language Modeling through Dependency Tree
Conversion [12.758523394180695]
本研究では,9つの変換法と5つの言語にまたがるニューラル言語モデル(LM)の性能への影響について検討する。
平均して、私たちの最高のモデルのパフォーマンスは、すべての言語で最悪の選択に対して、19パーセントの精度向上を示しています。
我々の実験は、正しい木形式を選ぶことの重要性を強調し、情報的な決定を下すための洞察を提供する。
論文 参考訳(メタデータ) (2022-04-19T03:56:28Z) - Reusing a Pretrained Language Model on Languages with Limited Corpora
for Unsupervised NMT [129.99918589405675]
本稿では,オープンソース言語上でのみ事前訓練されたLMを再利用する効果的な手法を提案する。
モノリンガルLMは両言語で微調整され、UNMTモデルの初期化に使用される。
我々のアプローチであるRE-LMは、英語・マケドニア語(En-Mk)と英語・アルバニア語(En-Sq)の競合言語間事前学習モデル(XLM)より優れています。
論文 参考訳(メタデータ) (2020-09-16T11:37:10Z) - El Departamento de Nosotros: How Machine Translated Corpora Affects
Language Models in MRC Tasks [0.12183405753834563]
大規模言語モデル(LM)の事前学習には大量のテキストコーパスが必要である。
下流自然言語処理タスクの微調整に直接翻訳コーパスを適用する際の注意点について検討する。
後処理に伴う慎重なキュレーションにより,性能が向上し,LM全体の堅牢性が向上することを示す。
論文 参考訳(メタデータ) (2020-07-03T22:22:44Z) - Language Model Prior for Low-Resource Neural Machine Translation [85.55729693003829]
ニューラル翻訳モデル (TM) において, LM を事前に組み込む新しい手法を提案する。
正規化項を追加し、TMの出力分布をLMの下で予測可能とする。
2つの低リソース機械翻訳データセットの結果は、限られたモノリンガルデータであっても明らかな改善を示している。
論文 参考訳(メタデータ) (2020-04-30T16:29:56Z) - Byte Pair Encoding is Suboptimal for Language Model Pretraining [49.30780227162387]
一グラムLMトークン化とバイトペア符号化(BPE)の違いを分析する。
その結果,一グラムのLMトークン化手法は,下流タスクと2つの言語でBPEと一致し,BPEより優れることがわかった。
我々は、将来の事前訓練されたLMの開発者が、より一般的なBPEよりもユニグラムのLMメソッドを採用することを期待する。
論文 参考訳(メタデータ) (2020-04-07T21:21:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。