High-Fidelity Qutrit Entangling Gates for Superconducting Circuits
- URL: http://arxiv.org/abs/2206.07216v3
- Date: Fri, 30 Jun 2023 00:58:39 GMT
- Title: High-Fidelity Qutrit Entangling Gates for Superconducting Circuits
- Authors: Noah Goss, Alexis Morvan, Brian Marinelli, Bradley K. Mitchell, Long
B. Nguyen, Ravi K. Naik, Larry Chen, Christian J\"unger, John Mark
Kreikebaum, David I. Santiago, Joel J. Wallman, Irfan Siddiqi
- Abstract summary: Ternary quantum information processing in superconducting devices poses a promising alternative to its more popular binary counterpart.
Although generally operated as qubits, transmons have readily addressable higher levels, making them natural candidates for operation as quantum three-level systems (qutrits)
We apply the differential AC Stark shift to implement a flexible, microwave-activated, and dynamic cross-Kerr entanglement between two fixed-frequency transmon qutrits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ternary quantum information processing in superconducting devices poses a
promising alternative to its more popular binary counterpart through larger,
more connected computational spaces and proposed advantages in quantum
simulation and error correction. Although generally operated as qubits,
transmons have readily addressable higher levels, making them natural
candidates for operation as quantum three-level systems (qutrits). Recent works
in transmon devices have realized high fidelity single qutrit operation.
Nonetheless, effectively engineering a high-fidelity two-qutrit entanglement
remains a central challenge for realizing qutrit processing in a transmon
device. In this work, we apply the differential AC Stark shift to implement a
flexible, microwave-activated, and dynamic cross-Kerr entanglement between two
fixed-frequency transmon qutrits, expanding on work performed for the $ZZ$
interaction with transmon qubits. We then use this interaction to engineer
efficient, high-fidelity qutrit CZ$^\dag$ and CZ gates, with estimated process
fidelities of 97.3(1)% and 95.2(3)% respectively, a significant step forward
for operating qutrits on a multi-transmon device.
Related papers
- Optimizing the frequency positioning of tunable couplers in a circuit QED processor to mitigate spectator effects on quantum operations [0.0]
We experimentally optimize the frequency of flux-tunable couplers in a superconducting quantum processor to minimize the impact of spectator transmons.
We adapt a popular transmon-like tunable-coupling element, achieving high-fidelity, low-leakage controlled-$Z$ gates with unipolar, fast-adiabatic pulsing only on the coupler.
arXiv Detail & Related papers (2025-03-17T14:41:05Z) - Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers [63.42120407991982]
Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.
We present a design for a multi-chip module comprising one carrier chip and four qubit modules.
Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.
We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
arXiv Detail & Related papers (2025-03-16T18:32:44Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - High-fidelity transmon coupler activated CCZ gate on fluxonium qubits [0.0]
We propose a novel way to perform a high-fidelity CCZ gate on fluxoniums capacitively connected via a transmon qubit, activated by a microwave pulse on the coupler.
We provide numerical simulation of 95-ns long gate of higher than 99.99% fidelity with realistic circuit parameters in the noiseless model and estimate an error of about 0.25% under the conventional decoherence rates.
arXiv Detail & Related papers (2023-08-29T11:36:19Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - All-microwave manipulation of superconducting qubits with a
fixed-frequency transmon coupler [0.685068326729525]
All-microwave control of superconducting quantum computing circuits is advantageous for minimizing the noise channels and wiring costs.
We introduce a swap interaction between two data transmons assisted by the third-order nonlinearity of a coupler transmon under a microwave drive.
arXiv Detail & Related papers (2023-02-14T09:34:20Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - High-fidelity three-qubit iToffoli gate for fixed-frequency
superconducting qubits [0.0]
We introduce a high-fidelity iToffoli gate based on two-qubit interactions, the so-called cross-resonance effect.
The iToffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%.
We numerically show that our gate scheme can produce additional three-qubit gates which provide more efficient gate synthesis than the Toffoli and iToffoli gates.
arXiv Detail & Related papers (2021-08-23T17:00:16Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Hardware-Efficient Microwave-Activated Tunable Coupling Between
Superconducting Qubits [0.0]
We realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling.
Because both transmons are driven, it is resilient to microwave crosstalk.
We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking.
arXiv Detail & Related papers (2021-05-12T01:06:08Z) - Suppression of static ZZ interaction in an all-transmon quantum processor [14.546367123004165]
We show that an feasible parameter region, where the ZZ interaction is heavily suppressed, can be found for all-transmon systems.
Two-qubit gates, such as cross-resonance gate or iSWAP gate, can be realized without the detrimental effect from static ZZ interaction.
arXiv Detail & Related papers (2020-11-08T13:11:08Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.