論文の概要: Calibrating Agent-based Models to Microdata with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2206.07570v1
- Date: Wed, 15 Jun 2022 14:41:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-16 13:18:49.866127
- Title: Calibrating Agent-based Models to Microdata with Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いたエージェントモデルからマイクロデータへのキャリブレーション
- Authors: Joel Dyer, Patrick Cannon, J. Doyne Farmer, Sebastian M. Schmon
- Abstract要約: エージェントベースモデル(ABM)をデータにキャリブレーションすることは、モデルがその目的を確実に満たすための最も基本的な要件である。
本稿では、時間グラフニューラルネットワークを用いて、粒状マイクロデータに付随するパラメータ後部を学習する。
- 参考スコア(独自算出の注目度): 1.4911092205861822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Calibrating agent-based models (ABMs) to data is among the most fundamental
requirements to ensure the model fulfils its desired purpose. In recent years,
simulation-based inference methods have emerged as powerful tools for
performing this task when the model likelihood function is intractable, as is
often the case for ABMs. In some real-world use cases of ABMs, both the
observed data and the ABM output consist of the agents' states and their
interactions over time. In such cases, there is a tension between the desire to
make full use of the rich information content of such granular data on the one
hand, and the need to reduce the dimensionality of the data to prevent
difficulties associated with high-dimensional learning tasks on the other. A
possible resolution is to construct lower-dimensional time-series through the
use of summary statistics describing the macrostate of the system at each time
point. However, a poor choice of summary statistics can result in an
unacceptable loss of information from the original dataset, dramatically
reducing the quality of the resulting calibration. In this work, we instead
propose to learn parameter posteriors associated with granular microdata
directly using temporal graph neural networks. We will demonstrate that such an
approach offers highly compelling inductive biases for Bayesian inference using
the raw ABM microstates as output.
- Abstract(参考訳): エージェントベースモデル(ABM)をデータにキャリブレーションすることは、モデルが望ましい目的を達成するための最も基本的な要件である。
近年,シミュレーションに基づく推論手法が,モデル確率関数が難解である場合に,このタスクを実行するための強力なツールとして出現している。
いくつかの実世界のABMのユースケースでは、観測されたデータとABM出力は、時間とともにエージェントの状態とその相互作用から成り立っている。
このような場合、そのような粒度データの豊富な情報内容をフル活用したいという欲求と、高次元学習課題に伴う困難を防止するためにデータの次元性を減らす必要性との間には緊張関係がある。
各時点におけるシステムのマクロ状態を記述する要約統計を用いて、低次元の時系列を構築することができる。
しかし、要約統計の貧弱な選択は、元のデータセットから情報の許容できない損失を生じさせ、結果として得られる校正の品質を劇的に低下させる。
そこで本研究では,時間グラフニューラルネットワークを用いて,粒状マイクロデータに付随するパラメータを学習することを提案する。
このようなアプローチは、生のABMマイクロステートを出力として、ベイズ推定に非常に魅力的な帰納バイアスを与えることを示す。
関連論文リスト
- Self-Supervision Improves Diffusion Models for Tabular Data Imputation [20.871219616589986]
本稿では,自己教師型計算拡散モデル (SimpDM for brevity) という高度な拡散モデルを提案する。
ノイズに対する感度を緩和するために、モデルを規則化し、一貫した安定な計算予測を保証する自己教師付きアライメント機構を導入する。
我々はまた、SimpDM内で慎重に設計された状態依存データ拡張戦略を導入し、限られたデータを扱う際の拡散モデルの堅牢性を高める。
論文 参考訳(メタデータ) (2024-07-25T13:06:30Z) - BECAUSE: Bilinear Causal Representation for Generalizable Offline Model-based Reinforcement Learning [39.090104460303415]
オフラインモデルベース強化学習(MBRL)は、事前コンパイルされたデータセットを使用してモデルとポリシーを学ぶことにより、データ効率を向上させる。
本稿は、このミスマッチの主な原因を、オフラインデータに存在する根底にある共同設立者から特定する。
両状態の因果表現をキャプチャするアルゴリズムである textbfBilintextbfEar textbfCAUSal rtextbfEpresentation (BECAUSE) を導入する。
論文 参考訳(メタデータ) (2024-07-15T17:59:23Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
論文 参考訳(メタデータ) (2024-03-27T02:24:00Z) - Stable Training of Probabilistic Models Using the Leave-One-Out Maximum Log-Likelihood Objective [0.7373617024876725]
カーネル密度推定(KDE)に基づくモデルは、このタスクの一般的な選択であるが、密度の異なるデータ領域に適応できない。
適応的なKDEモデルを用いてこれを回避し、モデル内の各カーネルは個別の帯域幅を持つ。
最適化速度を確実に高速化するために改良された期待最大化アルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-10-05T14:08:42Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
そこで、データ多様性を最適化可能な目的として明示的にモデル化するContrastive Model Inversionを提案します。
我々の主な観察では、同じ量のデータの制約の下では、高いデータの多様性は、通常より強いインスタンス識別を示す。
CIFAR-10, CIFAR-100, Tiny-ImageNetを用いた実験により, 生成したデータを知識蒸留に使用する場合, CMIは極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-05-18T15:13:00Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
ハイパウシティシナリオにおけるデータ分布の学習を容易にする新しいフレームワークを提案する。
提案手法は,不完全データから学習過程を協調最適化タスクとして行うことに由来する。
論文 参考訳(メタデータ) (2021-04-03T20:57:57Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。