NeuralCFD: Deep Learning on High-Fidelity Automotive Aerodynamics Simulations
- URL: http://arxiv.org/abs/2502.09692v1
- Date: Thu, 13 Feb 2025 17:58:07 GMT
- Title: NeuralCFD: Deep Learning on High-Fidelity Automotive Aerodynamics Simulations
- Authors: Maurits Bleeker, Matthias Dorfer, Tobias Kronlachner, Reinhard Sonnleitner, Benedikt Alkin, Johannes Brandstetter,
- Abstract summary: Key challenges must be overcome before neural network-based simulation surrogates can be implemented at an industry scale.<n>We introduce Geometry-preserving Universal Physics Transformer (GP-UPT), which separates geometry encoding and physics predictions.<n>GP-UPT circumvents the creation of high-quality simulation meshes, enables accurate 3D velocity field predictions at 20 million mesh cells, and excels in transfer learning from low-fidelity to high-fidelity simulation datasets.
- Score: 11.849142587216903
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advancements in neural operator learning are paving the way for transformative innovations in fields such as automotive aerodynamics. However, key challenges must be overcome before neural network-based simulation surrogates can be implemented at an industry scale. First, surrogates must become scalable to large surface and volume meshes, especially when using raw geometry inputs only, i.e., without relying on the simulation mesh. Second, surrogates must be trainable with a limited number of high-fidelity numerical simulation samples while still reaching the required performance levels. To this end, we introduce Geometry-preserving Universal Physics Transformer (GP-UPT), which separates geometry encoding and physics predictions, ensuring flexibility with respect to geometry representations and surface sampling strategies. GP-UPT enables independent scaling of the respective parts of the model according to practical requirements, offering scalable solutions to open challenges. GP-UPT circumvents the creation of high-quality simulation meshes, enables accurate 3D velocity field predictions at 20 million mesh cells, and excels in transfer learning from low-fidelity to high-fidelity simulation datasets, requiring less than half of the high-fidelity data to match the performance of models trained from scratch.
Related papers
- OmniFluids: Unified Physics Pre-trained Modeling of Fluid Dynamics [25.066485418709114]
We introduce OmniFluids, a unified physics pre-trained operator learning framework.<n>It integrates physics-only pre-training, coarse-grid operator distillation, and few-shot fine-tuning.<n>It significantly outperforms state-of-the-art AI-driven methods in flow field reconstruction and turbulence statistics accuracy.
arXiv Detail & Related papers (2025-06-12T16:23:02Z) - Flow Matching for Geometric Trajectory Simulation [4.271235935891555]
N-body systems are a fundamental problem with applications in a wide range of fields, such as molecular dynamics, biochemistry, and pedestrian dynamics.<n>Machine learning has become an invaluable tool for scaling physics-based simulators and developing models directly from experimental data.<n>To generate realistic trajectories, existing methods must learn complex transformations starting from uninformed noise and do not allow for the exploitation of domain-informed priors.<n>We propose STFlow to address this limitation. By leveraging flow matching and data-dependent couplings, STFlow facilitates physics-informed simulation of geometric trajectories without sacrificing model expressivity or scalability.
arXiv Detail & Related papers (2025-05-24T11:18:59Z) - 3D Neural Operator-Based Flow Surrogates around 3D geometries: Signed Distance Functions and Derivative Constraints [3.100300350494905]
computational cost of high-fidelity 3D flow simulations remains a significant challenge.
We evaluate Deep Operator Networks (DeepONet) and Geometric-DeepONet, a variant that incorporates geometry information via signed distance functions (SDFs)
Our results show that Geometric-DeepONet improves boundary-layer accuracy by up to 32% compared to standard DeepONet.
arXiv Detail & Related papers (2025-03-21T16:40:48Z) - Multifidelity Simulation-based Inference for Computationally Expensive Simulators [5.863359332854155]
We introduce MF-NPE, a multifidelity approach to neural posterior estimation that leverages inexpensive low-fidelity simulations to infer parameters of high-fidelity simulators within a limited simulation budget.<n> MF-NPE shows comparable performance to current approaches while requiring up to two orders of magnitude fewer high-fidelity simulations.
arXiv Detail & Related papers (2025-02-12T13:59:22Z) - Transfer learning in Scalable Graph Neural Network for Improved Physical Simulation [37.1565271299621]
We introduce a pre-training and transfer learning paradigm for graph network simulators.<n>We show that our proposed transfer learning methods allow the model to perform even better when fine-tuned with small amounts of training data.
arXiv Detail & Related papers (2025-02-07T08:18:23Z) - Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries [23.111935712144277]
Rapid yet accurate simulations of fluid dynamics around complex geometries is critical in a variety of engineering and scientific applications.<n>While scientific machine learning (SciML) has shown promise, most studies are constrained to simple geometries.<n>This study addresses this gap by benchmarking diverse SciML models for fluid flow prediction over intricate geometries.
arXiv Detail & Related papers (2024-12-31T00:23:15Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.
We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.
In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators [12.165876595927452]
Universal Physics Transformers (UPTs) are efficient and unified learning paradigm for a wide range of problems.<n>UPTs operate without grid- or particle-based latent meshes, enabling flexibility across structures and particles.<n>We demonstrate diverse applicability and efficacy of UPTs in mesh-based fluid simulations, and steady-state Reynolds averaged Navier-Stokes simulations.
arXiv Detail & Related papers (2024-02-19T18:52:13Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Investigation of Physics-Informed Deep Learning for the Prediction of
Parametric, Three-Dimensional Flow Based on Boundary Data [0.0]
We present a parameterized surrogate model for the prediction of three-dimensional flow fields in aerothermal vehicle simulations.
The proposed physics-informed neural network (PINN) design is aimed at learning families of flow solutions according to a geometric variation.
arXiv Detail & Related papers (2022-03-17T09:54:22Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.