The chromium dimer: closing a chapter of quantum chemistry
- URL: http://arxiv.org/abs/2206.10738v2
- Date: Wed, 24 Aug 2022 23:37:42 GMT
- Title: The chromium dimer: closing a chapter of quantum chemistry
- Authors: Henrik R. Larsson, Huanchen Zhai, C. J. Umrigar, Garnet Kin-Lic Chan
- Abstract summary: The complex electronic structure and unusual potential energy curve of the chromium dimer have fascinated scientists for decades.
We present a new ab initio simulation of the potential energy curve and vibrational spectrum that significantly improves on all earlier estimates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complex electronic structure and unusual potential energy curve of the
chromium dimer have fascinated scientists for decades, with agreement between
theory and experiment so far elusive. Here, we present a new ab initio
simulation of the potential energy curve and vibrational spectrum that
significantly improves on all earlier estimates. Our data support a shift in
earlier experimental assignments of a cluster of vibrational frequencies by one
quantum number. The new vibrational assignment yields an experimentally derived
potential energy curve in quantitative agreement with theory across all bond
lengths and across all measured frequencies. By solving this long-standing
problem, our results raise the possibility of quantitative quantum chemical
modeling of transition metal clusters with spectroscopic accuracy.
Related papers
- Dirac Equation Solution with Generalized tanh-Shaped Hyperbolic Potential: Application to Charmonium and Bottomonium Mass Spectra [0.0]
We use a generalized tanh shaped hyperbolic potential to investigate bound state solutions of the Dirac equation.
Results indicate that the energy eigenvalues are strongly correlated with the potential parameters.
Using this potential to model mass spectra of charmonium and bottomonium, we show that results for the calculated quark mass spectra align closely with experimentally observed values.
arXiv Detail & Related papers (2024-09-23T20:40:59Z) - Simulating Chemistry with Fermionic Optical Superlattices [2.7521403951088934]
We show that quantum number preserving Ans"atze for variational optimization in quantum chemistry find an elegant mapping to ultracold fermions in optical superlattices.
Trial ground states for arbitrary molecular Hamiltonians can be prepared and their molecular energies measured in the lattice.
arXiv Detail & Related papers (2024-09-09T14:35:55Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Relativistic ab initio study on the spectroscopic and radiative
properties of the lowest states and modeling of the optical cycles for the
LiFr molecule [0.0]
The LiFr diatomic represents a promising candidate for indirect laser cooling.
The data obtained would be useful for laser cooling and spectral experiments with LiFr molecules.
arXiv Detail & Related papers (2023-12-27T20:34:14Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - A perspective on ab initio modeling of polaritonic chemistry: The role
of non-equilibrium effects and quantum collectivity [0.0]
This perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry.
ab initio methods are used to tackle this complexity.
Various extensions towards a refined description of cavity-modified chemistry are introduced.
arXiv Detail & Related papers (2021-08-27T12:48:57Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.