論文の概要: AI Challenges for Society and Ethics
- arxiv url: http://arxiv.org/abs/2206.11068v1
- Date: Wed, 22 Jun 2022 13:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 09:23:48.204756
- Title: AI Challenges for Society and Ethics
- Title(参考訳): 社会と倫理のためのAIチャレンジ
- Authors: Jess Whittlestone and Sam Clarke
- Abstract要約: 人工知能はすでに、医療、金融、警察など、社会の重要な分野に応用され、影響を及ぼしている。
AIガバナンスの役割は、最終的に、AIにおけるイノベーションのメリットを実現しつつ、この危害のリスクを軽減するための実践的なステップを取ることです。
また、社会におけるAIの有益な利用がどのようなものかという規範的な質問を通じて考えることも必要だ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence is already being applied in and impacting many
important sectors in society, including healthcare, finance, and policing.
These applications will increase as AI capabilities continue to progress, which
has the potential to be highly beneficial for society, or to cause serious
harm. The role of AI governance is ultimately to take practical steps to
mitigate this risk of harm while enabling the benefits of innovation in AI.
This requires answering challenging empirical questions about current and
potential risks and benefits of AI: assessing impacts that are often widely
distributed and indirect, and making predictions about a highly uncertain
future. It also requires thinking through the normative question of what
beneficial use of AI in society looks like, which is equally challenging.
Though different groups may agree on high-level principles that uses of AI
should respect (e.g., privacy, fairness, and autonomy), challenges arise when
putting these principles into practice. For example, it is straightforward to
say that AI systems must protect individual privacy, but there is presumably
some amount or type of privacy that most people would be willing to give up to
develop life-saving medical treatments. Despite these challenges, research can
and has made progress on these questions. The aim of this chapter will be to
give readers an understanding of this progress, and of the challenges that
remain.
- Abstract(参考訳): 人工知能はすでに、医療、金融、警察など、社会の多くの重要な分野に適用され、影響している。
これらの応用は、AIの能力が進歩し続けるにつれて増加し、社会にとって非常に有益である可能性や深刻な害をもたらす可能性がある。
AIガバナンスの役割は、最終的に、AIにおけるイノベーションのメリットを実現しつつ、この危害のリスクを軽減するための実践的なステップを取ることです。
これは、現在および潜在的リスクとAIのメリットに関する挑戦的な経験的疑問に答えること、すなわち、広く分散され間接的に行われる影響を評価し、非常に不確実な未来について予測することである。
また、社会におけるAIの有益な利用がどのようなものかという規範的な質問を通じて考える必要がある。
異なるグループがAIを尊重すべき高レベルの原則(プライバシー、公正性、自律性など)に同意するかもしれないが、これらの原則を実践する場合に課題が発生する。
例えば、AIシステムは個人のプライバシを保護する必要があると言うのは簡単ですが、ほとんどの人が救命医療の開発を諦めたいと思うような、ある程度の量のプライバシがあるでしょう。
これらの課題にもかかわらず、研究はこれらの疑問に進展しうる。
この章の目的は、読者にこの進歩と残る課題について理解してもらうことである。
関連論文リスト
- Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
AIに関連する倫理的懸念には、公正性、プライバシとデータ保護、責任と説明責任、安全性と堅牢性、透明性と説明可能性、環境への影響といった課題が含まれている。
この研究は、AIを社会に展開する際の現在と将来の倫理的懸念を統一する。
論文 参考訳(メタデータ) (2023-11-28T21:00:56Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Positive AI: Key Challenges in Designing Artificial Intelligence for
Wellbeing [0.5461938536945723]
多くの人々は、AIが自分の生活に与える影響をますます心配しています。
AIの進歩を確実にするために、一部の研究者はAIを統治する鍵となる目的として「幸福」を提案した。
この記事では、幸福のためにAIを設計する際の重要な課題に対処する。
論文 参考訳(メタデータ) (2023-04-12T12:43:00Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Ever heard of ethical AI? Investigating the salience of ethical AI
issues among the German population [0.0]
AIに対する一般的な関心と高等教育レベルは、AIとの関わりを予測している。
倫理的な問題は、公平さ、説明責任、透明性が最も言及されていない市民の小さなサブセットによってのみ語られる。
倫理的AIが頭上に立つと、アクティビズムの可能性がある。
論文 参考訳(メタデータ) (2022-07-28T13:46:13Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z) - Towards a framework for understanding societal and ethical implications
of Artificial Intelligence [2.28438857884398]
本研究の目的は,AIの大量取り込みによって引き起こされる社会的・倫理的課題を明らかにすることである。
1) 好ましくない影響, 2) 責任, 3) 未知の結果, 4) 関係人ロボット, 5) 権力と富の集中, 6) 意図的悪用, 7) 武器と戦争のためのAI。
論文 参考訳(メタデータ) (2020-01-03T17:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。