論文の概要: Evidence fusion with contextual discounting for multi-modality medical
image segmentation
- arxiv url: http://arxiv.org/abs/2206.11739v1
- Date: Thu, 23 Jun 2022 14:36:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-24 13:37:07.033004
- Title: Evidence fusion with contextual discounting for multi-modality medical
image segmentation
- Title(参考訳): マルチモダリティ医用画像分割のためのコンテクストディスカウントによるエビデンス融合
- Authors: Ling Huang, Thierry Denoeux, Pierre Vera, Su Ruan
- Abstract要約: 本発明のフレームワークは、エンコーダ・デコーダ特徴抽出モジュールと、各モダリティに対する各ボクセルにおける信念関数を算出する明示的セグメンテーションモジュールと、多モードエビデンス融合モジュールとから構成される。
この方法は脳腫瘍1251例のBraTs 2021データベース上で評価された。
- 参考スコア(独自算出の注目度): 22.77837744216949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As information sources are usually imperfect, it is necessary to take into
account their reliability in multi-source information fusion tasks. In this
paper, we propose a new deep framework allowing us to merge multi-MR image
segmentation results using the formalism of Dempster-Shafer theory while taking
into account the reliability of different modalities relative to different
classes. The framework is composed of an encoder-decoder feature extraction
module, an evidential segmentation module that computes a belief function at
each voxel for each modality, and a multi-modality evidence fusion module,
which assigns a vector of discount rates to each modality evidence and combines
the discounted evidence using Dempster's rule. The whole framework is trained
by minimizing a new loss function based on a discounted Dice index to increase
segmentation accuracy and reliability. The method was evaluated on the BraTs
2021 database of 1251 patients with brain tumors. Quantitative and qualitative
results show that our method outperforms the state of the art, and implements
an effective new idea for merging multi-information within deep neural
networks.
- Abstract(参考訳): 情報ソースは通常不完全であるため、マルチソース情報融合タスクにおける信頼性を考慮する必要がある。
本稿では,dempster-shafer理論の形式化を用いて,異なるクラスに対する異なるモダリティの信頼性を考慮しつつ,マルチmr画像分割結果の統合を可能にする新しい深層フレームワークを提案する。
このフレームワークは、エンコーダ・デコーダ特徴抽出モジュールと、各モダリティに対する各ボクセルにおける信念関数を計算する明示的セグメンテーションモジュールと、各モダリティエビデンスに割引率のベクトルを割り当て、デンプスターの規則を用いて割引エビデンスを組み合わせる多モードエビデンス融合モジュールとから構成される。
フレームワーク全体のトレーニングは、ディスカウントされたDiceインデックスに基づいて新しい損失関数を最小化し、セグメント化精度と信頼性を向上させる。
この方法は脳腫瘍1251例のBraTs 2021データベース上で評価された。
定量的および定性的な結果から,本手法は最先端技術よりも優れており,深層ニューラルネットワーク内での多情報統合に有効な新しいアイデアが実現されている。
関連論文リスト
- Robust Divergence Learning for Missing-Modality Segmentation [6.144772447916824]
マルチモーダルMRI(Multimodal Magnetic Resonance Imaging)は、脳腫瘍の亜領域を解析するための重要な補完情報を提供する。
自動セグメンテーションのための4つの一般的なMRIモダリティを用いた手法は成功しているが、画像品質の問題、一貫性のないプロトコル、アレルギー反応、コスト要因などにより、モダリティの欠如に悩まされることが多い。
H"古い発散と相互情報に基づく新しい単一モード並列処理ネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-13T03:03:30Z) - Application of Multimodal Fusion Deep Learning Model in Disease Recognition [14.655086303102575]
本稿では,従来の単一モーダル認識手法の欠点を克服する,革新的なマルチモーダル融合深層学習手法を提案する。
特徴抽出段階では、画像ベース、時間的、構造化されたデータソースから高度な特徴を抽出するために最先端のディープラーニングモデルを適用する。
その結果, マルチモーダル融合モデルにおいて, 複数の評価指標にまたがる大きな利点が示された。
論文 参考訳(メタデータ) (2024-05-22T23:09:49Z) - A Multimodal Feature Distillation with CNN-Transformer Network for Brain Tumor Segmentation with Incomplete Modalities [15.841483814265592]
本稿では,CNN-Transformer Hybrid Network (MCTSeg) を用いたマルチモーダル特徴蒸留法を提案する。
CNN-Transformer ネットワークと Transformer の畳み込みブロックを併用して提案するモジュールの重要性について検討した。
論文 参考訳(メタデータ) (2024-04-22T09:33:44Z) - Exploiting Partial Common Information Microstructure for Multi-Modal
Brain Tumor Segmentation [11.583406152227637]
マルチモーダル性による学習は、磁気共鳴画像データから自動脳腫瘍セグメント化に不可欠である。
既存のアプローチは、モダリティのサブセットによって共有される部分的な共通情報に不可避である。
本稿では,このような部分的な共通情報を同定することで,画像分割モデルの識別能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-02-06T01:28:52Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - A Multi-View Dynamic Fusion Framework: How to Improve the Multimodal
Brain Tumor Segmentation from Multi-Views? [5.793853101758628]
本稿では,脳腫瘍セグメンテーションの性能向上を目的としたマルチビューダイナミックフュージョンフレームワークを提案する。
BRATS 2015とBRATS 2018で提案されたフレームワークを評価することで、マルチビューからの融合結果が単一ビューからのセグメンテーション結果よりも優れたパフォーマンスを達成できることが分かります。
論文 参考訳(メタデータ) (2020-12-21T09:45:23Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。