論文の概要: From Tensor Network Quantum States to Tensorial Recurrent Neural
Networks
- arxiv url: http://arxiv.org/abs/2206.12363v1
- Date: Fri, 24 Jun 2022 16:25:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-27 16:16:58.767561
- Title: From Tensor Network Quantum States to Tensorial Recurrent Neural
Networks
- Title(参考訳): テンソルネットワーク量子状態からテンソルリカレントニューラルネットワークへ
- Authors: Dian Wu, Riccardo Rossi, Filippo Vicentini, Giuseppe Carleo
- Abstract要約: 我々は,任意の行列積状態 (MPS) が線形メモリ更新を伴うリカレントニューラルネットワーク (RNN) によって正確に表現可能であることを示す。
我々は、このRNNアーキテクチャをマルチリニアメモリ更新を用いて2次元格子に一般化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that any matrix product state (MPS) can be exactly represented by a
recurrent neural network (RNN) with a linear memory update. We generalize this
RNN architecture to 2D lattices using a multilinear memory update. It supports
perfect sampling and wave function evaluation in polynomial time, and can
represent an area law of entanglement entropy. Numerical evidence shows that it
can encode the wave function using a bond dimension lower by orders of
magnitude when compared to MPS, with an accuracy that can be systematically
improved by increasing the bond dimension.
- Abstract(参考訳): 我々は,任意の行列積状態 (MPS) が線形メモリ更新を伴うリカレントニューラルネットワーク (RNN) によって正確に表現可能であることを示す。
我々はこのRNNアーキテクチャを多線形メモリ更新を用いて2次元格子に一般化する。
多項式時間での完全なサンプリングと波動関数の評価をサポートし、絡み合いエントロピーの領域則を表現できる。
数値的な証拠から、結合次元を増加させることで体系的に改善できる精度で、mpsよりも桁違いに小さい結合次元を用いて波動関数を符号化できることが示されている。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - GaborPINN: Efficient physics informed neural networks using
multiplicative filtered networks [0.0]
物理インフォームドニューラルネットワーク(PINN)は、ニューラルネットワーク(NN)で表される機能的ウェーブフィールドソリューションを提供する
本稿では,学習における波動場の特徴のいくつかを組み込んだ乗算フィルタネットワークを用いた改良PINNを提案する。
提案手法は,従来のPINNと比較して,収束速度が最大2マグニチュード向上する。
論文 参考訳(メタデータ) (2023-08-10T19:51:00Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Supplementing Recurrent Neural Network Wave Functions with Symmetry and
Annealing to Improve Accuracy [0.7234862895932991]
リカレントニューラルネットワーク(Recurrent Neural Network, RNN)は、人工知能のパラダイムから生まれたニューラルネットワークのクラスである。
本手法は, 三角格子上でのシステムサイズが14×14ドル以上の場合, 密度行列再正規化群(DMRG)よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-07-28T18:00:03Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Data-Driven Time Propagation of Quantum Systems with Neural Networks [0.0]
時間内に量子システムを伝播する教師あり機械学習の可能性について検討する。
ニューラルネットワークは、将来いつでもタイムプロパゲータとして機能し、自動回帰を形成する時間内に寝ることを示します。
論文 参考訳(メタデータ) (2022-01-27T17:08:30Z) - Learning Wave Propagation with Attention-Based Convolutional Recurrent
Autoencoder Net [0.0]
本稿では、波動伝播現象のデータ駆動モデリングのための、エンド・ツー・エンドの注意に基づく畳み込み再帰型オートエンコーダ(AB-CRAN)ネットワークを提案する。
波動伝搬に時間依存の双曲偏微分方程式で与えられる全階スナップショットから、デノナイジングに基づく畳み込みオートエンコーダを用いる。
注意に基づくシーケンス・ツー・シーケンス・ネットワークは、通常のRNN-LSTMと比較して、予測の時間-水平を5倍増加させる。
論文 参考訳(メタデータ) (2022-01-17T20:51:59Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - Memory Capacity of Recurrent Neural Networks with Matrix Representation [1.0978496459260902]
本稿では,行列型ニューラルネットワークにおけるフィッシャー情報に基づくメモリ容量の確率論的概念について検討する。
本稿では,外部メモリの出現時に導入されるネットワークのメモリ容量の増大について述べる。
外部メモリの追加により, Matrix NTMの性能が向上した。
論文 参考訳(メタデータ) (2021-04-11T23:43:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。