論文の概要: Position-Agnostic Autonomous Navigation in Vineyards with Deep
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2206.14155v1
- Date: Tue, 28 Jun 2022 17:03:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-29 13:54:44.759125
- Title: Position-Agnostic Autonomous Navigation in Vineyards with Deep
Reinforcement Learning
- Title(参考訳): 深部強化学習を伴うブドウ園における位置依存型自律ナビゲーション
- Authors: Mauro Martini, Simone Cerrato, Francesco Salvetti, Simone Angarano,
Marcello Chiaberge
- Abstract要約: そこで本稿では, 高精度な局所化データを活用することなく, フレキシブルな学習アプローチでタスク調整アルゴリズムを克服することなく, 自動ブドウ園ナビゲーションの課題に対処する, 最先端の軽量ソリューションを提案する。
我々は、ノイズの多い深度画像と位置認識ロボットの状態情報を速度コマンドに直接マッピングし、ロボットを行の端まで案内し、衝突のない中心軌道への進路を連続的に調整するエンドツーエンドのセンサモレータエージェントを訓練する。
- 参考スコア(独自算出の注目度): 1.2599533416395767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precision agriculture is rapidly attracting research to efficiently introduce
automation and robotics solutions to support agricultural activities. Robotic
navigation in vineyards and orchards offers competitive advantages in
autonomously monitoring and easily accessing crops for harvesting, spraying and
performing time-consuming necessary tasks. Nowadays, autonomous navigation
algorithms exploit expensive sensors which also require heavy computational
cost for data processing. Nonetheless, vineyard rows represent a challenging
outdoor scenario where GPS and Visual Odometry techniques often struggle to
provide reliable positioning information. In this work, we combine Edge AI with
Deep Reinforcement Learning to propose a cutting-edge lightweight solution to
tackle the problem of autonomous vineyard navigation without exploiting precise
localization data and overcoming task-tailored algorithms with a flexible
learning-based approach. We train an end-to-end sensorimotor agent which
directly maps noisy depth images and position-agnostic robot state information
to velocity commands and guides the robot to the end of a row, continuously
adjusting its heading for a collision-free central trajectory. Our extensive
experimentation in realistic simulated vineyards demonstrates the effectiveness
of our solution and the generalization capabilities of our agent.
- Abstract(参考訳): 精密農業は農業活動を支援するために自動化とロボット工学のソリューションを効率的に導入する研究を急速に集めている。
ブドウ畑や果樹園でのロボットナビゲーションは、作物の収穫、噴霧、時間を要する必要なタスクの実行を自律的に監視し、容易にアクセスする上で、競争上の優位性を提供する。
現在、自律ナビゲーションアルゴリズムは高価なセンサーを利用しており、データ処理には計算コストもかかる。
にもかかわらず、ブドウ畑の列はGPSとビジュアルオドメトリーの技術が信頼できる位置情報の提供に苦戦する、困難な屋外シナリオを表している。
本研究では,エッジaiと深層強化学習を組み合わせることで,柔軟な学習に基づくアプローチにより,正確な局所化データやタスク対応アルゴリズムを克服することなく,自律的ブドウ畑ナビゲーションの問題に取り組むための最先端軽量ソリューションを提案する。
我々は,ノイズの多い深度画像と位置非依存のロボット状態情報を速度指令に直接マッピングし,ロボットを列末まで誘導し,衝突のない中央軌道への方向を継続的に調整する,エンドツーエンドのセンサモデレータエージェントを訓練する。
実写的なブドウ園での広範囲な実験は,我々のソリューションの有効性と,エージェントの一般化能力を示している。
関連論文リスト
- Enhancing Navigation Benchmarking and Perception Data Generation for
Row-based Crops in Simulation [0.3518016233072556]
本稿では,セマンティックセグメンテーションネットワークを学習するための合成データセットと,ナビゲーションアルゴリズムを高速に評価するための仮想シナリオのコレクションを提案する。
異なるフィールドジオメトリと特徴を探索するための自動パラメトリック手法が開発されている。
シミュレーションフレームワークとデータセットは、異なる作物のディープセグメンテーションネットワークをトレーニングし、その結果のナビゲーションをベンチマークすることで評価されている。
論文 参考訳(メタデータ) (2023-06-27T14:46:09Z) - Vision-based Vineyard Navigation Solution with Automatic Annotation [2.6013566739979463]
本研究では、ブドウ畑などの密作システムにおける農業ロボットのための視覚に基づく自律ナビゲーションフレームワークを提案する。
本稿では,RGB-D画像から直接経路トラバーシビリティ・ヒートマップを推定する新しい学習手法を提案する。
訓練された経路検出モデルを用いて、行追跡と行切替モジュールからなる完全なナビゲーションフレームワークを開発した。
論文 参考訳(メタデータ) (2023-03-25T03:37:17Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - A Deep Learning Driven Algorithmic Pipeline for Autonomous Navigation in
Row-Based Crops [38.4971490647654]
我々は、ローレンジセンサーと季節変動に対応するために特別に設計された、行ベースの自律ナビゲーションのための完全なアルゴリズムパイプラインを提案する。
我々は、データ駆動の堅牢な手法に基づいて、作物の完全な拡張を、フィールドの占有グリッドマップ情報のみでカバーし、自律機械の実行可能なパスを生成する。
論文 参考訳(メタデータ) (2021-12-07T16:46:17Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
複雑な自然環境や人工環境を高速で自律的に飛行するエンド・ツー・エンドのアプローチを提案する。
鍵となる原理は、雑音の知覚観測を直接、後退水平方向に無衝突軌道にマッピングすることである。
現実的なセンサノイズをシミュレートすることにより,シミュレーションから現実環境へのゼロショット転送を実現する。
論文 参考訳(メタデータ) (2021-10-11T09:43:11Z) - ReLMM: Practical RL for Learning Mobile Manipulation Skills Using Only
Onboard Sensors [64.2809875343854]
ロボットは、ナビゲーションと把握の組み合わせを必要とするスキルを自律的に学習する方法について研究する。
我々のシステムであるReLMMは、環境機器を使わずに、現実世界のプラットフォームで継続的に学習することができる。
グラウンドカリキュラムトレーニングフェーズの後、ReLMMは、現実世界のトレーニングの約40時間で、ナビゲーションと完全に自動的なグリップを学習できる。
論文 参考訳(メタデータ) (2021-07-28T17:59:41Z) - Deep Semantic Segmentation at the Edge for Autonomous Navigation in
Vineyard Rows [0.0]
精密農業は、農業プロセスに安価で効果的な自動化を導入することを目的としている。
提案する制御は,機械認識技術とエッジAI技術の最新技術を活用して,ブドウ畑の列内における高精度で信頼性の高いナビゲーションを実現する。
制御アルゴリズム自体によって生成されたセグメンテーションマップは、作物の状態の植物性評価のためのフィルタとして直接利用することができる。
論文 参考訳(メタデータ) (2021-07-01T18:51:58Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
モバイル構築のためのインテリジェントなロボット、環境をナビゲートし、幾何学的設計に従ってその構造を変更するプロセスが必要です。
このタスクでは、ロボットのビジョンと学習の大きな課題は、GPSなしでデザインを正確に達成する方法です。
我々は,手工芸政策の性能を,基礎的なローカライゼーションと計画,最先端の深層強化学習手法を用いて評価した。
論文 参考訳(メタデータ) (2021-03-31T00:05:54Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z) - Local Motion Planner for Autonomous Navigation in Vineyards with a RGB-D
Camera-Based Algorithm and Deep Learning Synergy [1.0312968200748118]
本研究では、ブドウ畑における自律走行のための低コストな局所移動プランナを提案する。
最初のアルゴリズムは、不均一マップとその深さ表現を利用して、ロボットプラットフォームに対する比例制御を生成する。
第2のバックアップアルゴリズムは、学習の学習に基づいており、照明の変動に耐性があり、第1ブロックが瞬間的に故障した場合にマシンを制御できる。
論文 参考訳(メタデータ) (2020-05-26T15:47:42Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。