Astroconformer: Inferring Surface Gravity of Stars from Stellar Light
Curves with Transformer
- URL: http://arxiv.org/abs/2207.02787v1
- Date: Wed, 6 Jul 2022 16:22:37 GMT
- Title: Astroconformer: Inferring Surface Gravity of Stars from Stellar Light
Curves with Transformer
- Authors: Jiashu Pan, Yuan-Sen Ting and Jie Yu
- Abstract summary: We introduce Astroconformer, a Transformer-based model to analyze stellar light curves from the Kepler mission.
We demonstrate that Astrconformer can robustly infer the stellar surface gravity as a supervised task.
We also show that the method can generalize to sparse cadence light curves from the Rubin Observatory.
- Score: 1.122225892380515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Astroconformer, a Transformer-based model to analyze stellar
light curves from the Kepler mission. We demonstrate that Astrconformer can
robustly infer the stellar surface gravity as a supervised task. Importantly,
as Transformer captures long-range information in the time series, it
outperforms the state-of-the-art data-driven method in the field, and the
critical role of self-attention is proved through ablation experiments.
Furthermore, the attention map from Astroconformer exemplifies the long-range
correlation information learned by the model, leading to a more interpretable
deep learning approach for asteroseismology. Besides data from Kepler, we also
show that the method can generalize to sparse cadence light curves from the
Rubin Observatory, paving the way for the new era of asteroseismology,
harnessing information from long-cadence ground-based observations.
Related papers
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
We describe a new, unbiased, and machine learning based approach to obtain useful scientific insights from a broad range of simulations.
Our concept is based on applying nonlinear dimensionality reduction to learn compact representations of the data in a low-dimensional space.
We present a prototype using a rotational invariant hyperspherical variational convolutional autoencoder, utilizing a power distribution in the latent space, and trained on galaxies from IllustrisTNG simulation.
arXiv Detail & Related papers (2024-06-06T07:34:58Z) - The Scaling Law in Stellar Light Curves [3.090476527764192]
We investigate the scaling law properties that emerge when learning from astronomical time series data using self-supervised techniques.
A self-supervised Transformer model achieves 3-10 times the sample efficiency compared to the state-of-the-art supervised learning model.
Our research lays the groundwork for analyzing stellar light curves by examining them through large-scale auto-regressive generative models.
arXiv Detail & Related papers (2024-05-27T13:31:03Z) - Reconstructing Atmospheric Parameters of Exoplanets Using Deep Learning [9.735933075230069]
We present a multi-target probabilistic regression approach that combines deep learning and inverse modeling techniques within a multimodal architecture to extract atmospheric parameters from exoplanets.
Our methodology overcomes computational limitations and outperforms previous approaches, enabling efficient analysis of exoplanetary atmospheres.
arXiv Detail & Related papers (2023-10-02T14:16:04Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
In the anisotropic setting, the commonly used spherical gradient dynamics may fail to recover the true direction.
We show that appropriate weight normalization that is reminiscent of batch normalization can alleviate this issue.
In particular, under the spiked model with a suitably large spike, the sample complexity of gradient-based training can be made independent of the information exponent.
arXiv Detail & Related papers (2023-09-07T16:55:50Z) - A Novel Application of Conditional Normalizing Flows: Stellar Age
Inference with Gyrochronology [0.0]
We show that a data-driven approach can constrain gyrochronological ages with a precision comparable to other standard techniques.
This work demonstrates the potential of a probabilistic data-driven solution to widen the applicability of gyrochronological stellar dating.
arXiv Detail & Related papers (2023-07-17T18:00:19Z) - Self-Supervised Learning for Modeling Gamma-ray Variability in Blazars [0.0]
Blazars are active galactic nuclei with relativistic jets pointed almost directly at Earth.
Deep learning can help uncover structure in gamma-ray blazars' complex variability patterns.
arXiv Detail & Related papers (2023-02-15T14:57:46Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression [68.8204255655161]
The deep learning revolution has opened the door for deriving such analytical results directly with a computer algorithm fitting to the data.
We successfully demonstrate the use of symbolic regression on synthetic data for the transit radii of generic hot Jupiter exoplanets.
As a preprocessing step, we use dimensional analysis to identify the relevant dimensionless combinations of variables.
arXiv Detail & Related papers (2021-12-22T00:52:56Z) - Latent World Models For Intrinsically Motivated Exploration [140.21871701134626]
We present a self-supervised representation learning method for image-based observations.
We consider episodic and life-long uncertainties to guide the exploration of partially observable environments.
arXiv Detail & Related papers (2020-10-05T19:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.