論文の概要: Uncertainty-aware Mixed-variable Machine Learning for Materials Design
- arxiv url: http://arxiv.org/abs/2207.04994v1
- Date: Mon, 11 Jul 2022 16:37:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-12 13:55:39.752030
- Title: Uncertainty-aware Mixed-variable Machine Learning for Materials Design
- Title(参考訳): 材料設計のための不確かさを意識した混合変数機械学習
- Authors: Hengrui Zhang, Wei "Wayne" Chen, Akshay Iyer, Daniel W. Apley, Wei
Chen
- Abstract要約: 我々は、混合変数による機械学習の不確実性定量化に対する頻繁なアプローチとベイズ的アプローチを調査した。
数学的関数の最適化における2つのモデルの有効性と,構造的および機能的材料の性質について検討する。
材料設計における多変量BOの頻繁性とベイズ不確実性を考慮した機械学習モデルの選択に関する実践的ガイダンスを提供する。
- 参考スコア(独自算出の注目度): 9.259285449415676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven design shows the promise of accelerating materials discovery but
is challenging due to the prohibitive cost of searching the vast design space
of chemistry, structure, and synthesis methods. Bayesian Optimization (BO)
employs uncertainty-aware machine learning models to select promising designs
to evaluate, hence reducing the cost. However, BO with mixed numerical and
categorical variables, which is of particular interest in materials design, has
not been well studied. In this work, we survey frequentist and Bayesian
approaches to uncertainty quantification of machine learning with mixed
variables. We then conduct a systematic comparative study of their performances
in BO using a popular representative model from each group, the random
forest-based Lolo model (frequentist) and the latent variable Gaussian process
model (Bayesian). We examine the efficacy of the two models in the optimization
of mathematical functions, as well as properties of structural and functional
materials, where we observe performance differences as related to problem
dimensionality and complexity. By investigating the machine learning models'
predictive and uncertainty estimation capabilities, we provide interpretations
of the observed performance differences. Our results provide practical guidance
on choosing between frequentist and Bayesian uncertainty-aware machine learning
models for mixed-variable BO in materials design.
- Abstract(参考訳): データ駆動設計は、材料の発見を加速する可能性を示しているが、化学、構造、合成の広大な設計空間を探索するのにコストがかかるため困難である。
ベイジアン最適化(bo)は、不確実性を認識した機械学習モデルを使用して、評価する有望な設計を選択し、コストを削減する。
しかし,材料設計に特に興味を持つ数値変数とカテゴリー変数の混合boは十分に研究されていない。
本研究では,混合変数を用いた機械学習の不確実性定量化に対する頻繁かつベイズ的アプローチについて検討する。
次に、各グループからの人気代表モデル、ランダム森林に基づくロロモデル(頻度主義)、潜在変数ガウス過程モデル(ベイジアン)を用いて、BOにおけるそれらのパフォーマンスの体系的比較研究を行う。
数学関数の最適化における2つのモデルの有効性,および構造的および機能的材料の性質について検討し,問題次元と複雑性に関する性能差を観察する。
機械学習モデルの予測および不確実性推定能力を調べることにより、観測された性能差の解釈を提供する。
材料設計における多変量BOの頻繁性とベイズ不確実性を考慮した機械学習モデルの選択に関する実践的ガイダンスを提供する。
関連論文リスト
- Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
本稿では,抽出可能な確率を伴わない計算モデルを選択する実験設計手法BOSMOSを提案する。
シミュレーション実験では,提案手法により,既存のLFI手法に比べて最大2桁の精度でモデルを選択することができることを示した。
論文 参考訳(メタデータ) (2023-03-03T21:41:01Z) - Statistical Aspects of SHAP: Functional ANOVA for Model Interpretation [0.456877715768796]
SHAP近似の課題は、特徴分布の選択と推定されるANOVAの2ドル$ANOVAの項数に大きく関係していることが示される。
機械学習の説明可能性と感度分析の関連性は、このケースでは明らかにされているが、実際的な結果は明らかではない。
論文 参考訳(メタデータ) (2022-08-21T21:46:15Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Modeling Systems with Machine Learning based Differential Equations [0.0]
微分方程式の解として,力学系の時間連続モデルの設計を提案する。
以上の結果から,本手法は合成データや実験データに有用である可能性が示唆された。
論文 参考訳(メタデータ) (2021-09-09T19:10:46Z) - Model Uncertainty and Correctability for Directed Graphical Models [3.326320568999945]
我々は、有向グラフモデルのための情報理論、頑健な不確実性定量化法および非パラメトリック応力試験を開発する。
我々は,グラフィカルモデルのコンポーネント改善のための体系的な選択を保証する,数学的に厳密な修正性に対するアプローチを提供する。
提案手法は, 量子スケールインフォームド化学反応と, 燃料電池の効率向上のための材料スクリーニングの2つの物理化学的例で実証した。
論文 参考訳(メタデータ) (2021-07-17T04:30:37Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
ガウス過程(GP)は、大きなデータセット、カテゴリ入力、および複数の応答を調節するのに困難である。
本稿では,変分推論によって得られた潜伏変数と関数を用いて,上記の課題を同時に解決するGPモデルを提案する。
本手法は三元系酸化物材料の機械学習と多スケール対応機構のトポロジー最適化に有用である。
論文 参考訳(メタデータ) (2021-06-26T02:17:23Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。