論文の概要: Modeling Systems with Machine Learning based Differential Equations
- arxiv url: http://arxiv.org/abs/2109.05935v1
- Date: Thu, 9 Sep 2021 19:10:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-19 01:52:17.712821
- Title: Modeling Systems with Machine Learning based Differential Equations
- Title(参考訳): 機械学習に基づく微分方程式を用いたモデリングシステム
- Authors: Pedro Garcia
- Abstract要約: 微分方程式の解として,力学系の時間連続モデルの設計を提案する。
以上の結果から,本手法は合成データや実験データに有用である可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prediction of behavior in dynamical systems, is frequently subject to the
design of models. When a time series obtained from observing the system is
available, the task can be performed by designing the model from these
observations without additional assumptions or by assuming a preconceived
structure in the model, with the help of additional information about the
system. In the second case, it is a question of adequately combining theory
with observations and subsequently optimizing the mixture. In this work, we
proposes the design of time-continuous models of dynamical systems as solutions
of differential equations, from non-uniform sampled or noisy observations,
using machine learning techniques. The performance of strategy is shown with
both, several simulated data sets and experimental data from Hare-Lynx
population and Coronavirus 2019 outbreack. Our results suggest that this
approach to the modeling systems, can be an useful technique in the case of
synthetic or experimental data.
- Abstract(参考訳): 力学系における振る舞いの予測は、しばしばモデルの設計の対象となる。
システム観測から得られた時系列が利用可能であれば、追加の仮定なしにこれらの観測からモデルを設計したり、システムに関する追加情報を用いてモデル内の前提構造を仮定することでタスクを遂行することができる。
第2のケースでは、理論と観測を適切に結合し、次に混合を最適化する問題である。
本研究では,非均一なサンプルあるいはノイズの観測結果から,微分方程式の解法として,動的システムの時間連続モデルの設計を提案する。
戦略のパフォーマンスは、いくつかのシミュレーションデータセットと、Hare-Lynx集団とCoronavirus 2019による実験データの両方で示されている。
以上の結果から, モデリングシステムに対するこのアプローチは, 合成データや実験データにおいて有用な手法であることが示唆された。
関連論文リスト
- Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Analysis of Numerical Integration in RNN-Based Residuals for Fault
Diagnosis of Dynamic Systems [0.6999740786886536]
本論文は,重度トラックの後処理システムの事例スタディを含み,これらの技術が故障診断性能を向上させる可能性を明らかにする。
データ駆動モデリングと機械学習は、動的システムの振る舞いをモデル化するために広く使われている。
論文 参考訳(メタデータ) (2023-05-08T12:48:18Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Interpretable reduced-order modeling with time-scale separation [9.889399863931676]
高次元の偏微分方程式(PDE)は計算物理学や工学でよく見られる。
本稿では,関連する時間スケールの識別を自動化するデータ駆動方式を提案する。
このデータ駆動型スキームは,線形ODEのシステムを分解する独立プロセスを自動的に学習できることを示す。
論文 参考訳(メタデータ) (2023-03-03T19:23:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
本稿では,非線形力学系の部分的,雑音的,不規則な観測からベイズ系を同定する機械学習フレームワーク(GP-NODE)を提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
捕食者予備システム,システム生物学,50次元ヒューマンモーションダイナミクスシステムを含む提案GP-NODE法の有効性を示すために,一連の数値的研究を行った。
論文 参考訳(メタデータ) (2021-03-04T23:42:14Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。