論文の概要: Verification of Sigmoidal Artificial Neural Networks using iSAT
- arxiv url: http://arxiv.org/abs/2207.06755v1
- Date: Thu, 14 Jul 2022 09:08:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 13:02:43.501127
- Title: Verification of Sigmoidal Artificial Neural Networks using iSAT
- Title(参考訳): iSATを用いたシグモダルニューラルネットワークの検証
- Authors: Dominik Grundt (German Aerospace Center e.V.), Sorin Liviu Jurj
(German Aerospace Center e.V.), Willem Hagemann (German Aerospace Center
e.V.), Paul Kr\"oger (Carl von Ossietzky University Oldenburg), Martin
Fr\"anzle (Carl von Ossietzky University Oldenburg)
- Abstract要約: SMTソルバiSATにシグモイド関数の専用間隔制約プロパゲータを実装した。
本手法は,iSATで利用可能な基本的な算術的特徴と近似的アプローチを用いて,シグモイド関数を符号化する構成的アプローチと比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents an approach for verifying the behaviour of nonlinear
Artificial Neural Networks (ANNs) found in cyber-physical safety-critical
systems. We implement a dedicated interval constraint propagator for the
sigmoid function into the SMT solver iSAT and compare this approach with a
compositional approach encoding the sigmoid function by basic arithmetic
features available in iSAT and an approximating approach. Our experimental
results show that the dedicated and the compositional approach clearly
outperform the approximating approach. Throughout all our benchmarks, the
dedicated approach showed an equal or better performance compared to the
compositional approach.
- Abstract(参考訳): 本稿では,サイバー物理安全クリティカルシステムにおける非線形ニューラルネットワーク(anns)の挙動を検証する手法を提案する。
我々は,SMTソルバiSATにシグモイド関数の専用間隔制約プロパゲータを実装し,iSATで利用可能な基本的な算術的特徴と近似的アプローチを用いて,シグモイド関数を符号化する構成的アプローチと比較した。
実験の結果, 作曲アプローチと作曲アプローチが近似的アプローチを明らかに上回っていることがわかった。
すべてのベンチマークを通じて、専用アプローチは構成アプローチと同等かそれ以上のパフォーマンスを示した。
関連論文リスト
- A neural network approach for solving the Monge-Ampère equation with transport boundary condition [0.0]
本稿では,輸送境界条件でモンジュ・アンペア方程式を解くためのニューラルネットワークに基づく新しい手法を提案する。
我々は、方程式の残差、境界条件、凸性制約を含む損失関数を最小化することにより、多層パーセプトロンネットワークを利用して近似解を学習する。
論文 参考訳(メタデータ) (2024-10-25T11:54:00Z) - Distance Recomputator and Topology Reconstructor for Graph Neural Networks [22.210886585639063]
グラフニューラルネットワーク(GNN)の強化を目的とした距離再計算手法とトポロジー再構成手法を導入する。
Distance Recomputatorは動的符号化方式を用いてノード距離を動的に補正し、ノード表現の精度と適応性を向上させる。
トポロジー再構成器は、計算された「類似性距離」に基づいて局所グラフ構造を調整し、学習結果を改善するためにネットワーク構成を最適化する。
論文 参考訳(メタデータ) (2024-06-25T05:12:51Z) - Front-propagation Algorithm: Explainable AI Technique for Extracting Linear Function Approximations from Neural Networks [0.0]
本稿では、深層ニューラルネットワークの意思決定ロジックの解明を目的とした、新しいAI技術であるフロントプロパゲーションアルゴリズムを紹介する。
積分グラディエントやシェープ値などの他の一般的な説明可能性アルゴリズムとは異なり、提案アルゴリズムはネットワークの正確で一貫した線形関数説明を抽出することができる。
公開されているベンチマークデータセットに基づいてトレーニングされた3つの異なるニューラルネットワークアーキテクチャで、正確な線形関数を提供することの有効性を実証する。
論文 参考訳(メタデータ) (2024-05-25T14:50:23Z) - Optimal Inference in Contextual Stochastic Block Models [0.0]
属性グラフの教師なしコミュニティ検出のために,文脈ブロックモデル (cSBM) を提案した。
cSBMは、半教師付きノード分類のためのグラフニューラルネットワーク(GNN)の性能を評価するための合成データセットとして広く利用されている。
本稿では,本アルゴリズムが到達した精度と,本論文で提案したGNNアーキテクチャの性能との間には,かなりのギャップが存在することを示す。
論文 参考訳(メタデータ) (2023-06-06T10:02:57Z) - On the Effective Usage of Priors in RSS-based Localization [56.68864078417909]
本稿では、受信信号強度(RSS)指紋と畳み込みニューラルネットワークに基づくアルゴリズムLocUNetを提案する。
本稿では,密集市街地における局所化問題について検討する。
まず,LocUNetがRx位置やRxの事前分布を学習し,トレーニングデータから送信者(Tx)アソシエーションの好みを学習し,その性能を評価できることを示す。
論文 参考訳(メタデータ) (2022-11-28T00:31:02Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
我々は、深層ニューラルネットワーク(DNN)を量子化重みでトレーニングするための新しいアルゴリズム、Annealed Skewed SGD - AskewSGDを開発した。
アクティブなセットと実行可能な方向を持つアルゴリズムとは異なり、AskewSGDは実行可能な全セットの下でのプロジェクションや最適化を避けている。
実験結果から,AskewSGDアルゴリズムは古典的ベンチマークの手法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T18:13:44Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
単一チャネルソース分離(SCSS)の問題点について検討する。
我々は、様々なアプリケーション領域に特に適するサイクロ定常信号に焦点を当てる。
本稿では,最小MSE推定器と競合するU-Netアーキテクチャを用いたディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-22T14:04:56Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
本研究では,シンクホーンの発散による確率空間上の最も急降下法として機能するシンクホーン自然勾配(SiNG)アルゴリズムを提案する。
本稿では,SiNG の主要成分であるシンクホーン情報行列 (SIM) が明示的な表現を持ち,対数的スケールの複雑さを正確に評価できることを示す。
本実験では,SiNGと最先端のSGD型解法を定量的に比較し,その有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-11-09T02:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。