論文の概要: BIP: Boost Invariant Polynomials for Efficient Jet Tagging
- arxiv url: http://arxiv.org/abs/2207.08272v1
- Date: Sun, 17 Jul 2022 19:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 19:09:20.218942
- Title: BIP: Boost Invariant Polynomials for Efficient Jet Tagging
- Title(参考訳): BIP:効率的なジェットタグ作成のための不変ポリノミアル
- Authors: Jose M Munoz, Ilyes Batatia, Christoph Ortner
- Abstract要約: 本稿では,ジェット表現のための新しい,汎用的で透明な枠組みを提案する。
ジェットタグベンチマークの精度は高いが、訓練や評価は桁違いに高速である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning approaches are becoming the go-to methods for data analysis in
High Energy Physics (HEP). Nonetheless, most physics-inspired modern
architectures are computationally inefficient and lack interpretability. This
is especially the case with jet tagging algorithms, where computational
efficiency is crucial considering the large amounts of data produced by modern
particle detectors. In this work, we present a novel, versatile and transparent
framework for jet representation; invariant to Lorentz group boosts, which
achieves high accuracy on jet tagging benchmarks while being orders of
magnitudes faster to train and evaluate than other modern approaches for both
supervised and unsupervised schemes.
- Abstract(参考訳): ディープラーニングアプローチは、高エネルギー物理学(HEP)におけるデータ分析のゴーツー手法になりつつある。
しかし、多くの物理学に触発された近代建築は計算効率が悪く、解釈性が欠如している。
これは特にジェットタグアルゴリズムの場合であり、現代の粒子検出器が生成する大量のデータを考えると計算効率が極めて重要である。
本研究では,新しい汎用的かつ透明なジェット表現フレームワークを提案する。lorentz group boostsに不変であり,教師付きおよび教師なしのスキームに対する他の現代的なアプローチよりも,訓練および評価が桁違いに高速であると同時に,ジェットタグ付けベンチマークにおいて高い精度を実現する。
関連論文リスト
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - No Train No Gain: Revisiting Efficient Training Algorithms For
Transformer-based Language Models [31.080446886440757]
本稿では、動的アーキテクチャ(レイヤの積み重ね、ドロップ)、バッチ選択(選択的バックプロップ、ROH損失)、効率的なレイヤ(Lion, Sophia)の3つのカテゴリを再検討する。
トレーニング,検証,ダウンストリームのゲインが,完全に遅延した学習率のベースラインに比べて消失していることが分かりました。
我々は、全ての計算時間を参照システム時間と呼ぶ参照マシンにマッピングすることで、任意の計算でマシンを実行できる評価プロトコルを定義した。
論文 参考訳(メタデータ) (2023-07-12T20:10:14Z) - Hardware Acceleration of Explainable Artificial Intelligence [5.076419064097733]
我々は,既存のハードウェアアクセラレーターを用いて,様々なXAIアルゴリズムを高速化する,シンプルかつ効率的なフレームワークを提案する。
提案手法はリアルタイムな結果解釈につながる可能性がある。
論文 参考訳(メタデータ) (2023-05-04T19:07:29Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot Object Detection (FSOD) は、未確認のタスクに少ないトレーニングサンプルで適応できるジェネリック検出器を学習することを目的としている。
計算量の増加を伴わない効率的なプレトレイン・トランスファー・フレームワーク(PTF)のベースラインを提案する。
また,予測された新しいウェイトと事前訓練されたベースウェイトとのベクトル長の不整合を軽減するために,適応長再スケーリング(ALR)戦略を提案する。
論文 参考訳(メタデータ) (2022-03-23T06:24:31Z) - Towards Structured Dynamic Sparse Pre-Training of BERT [4.567122178196833]
BERT言語モデリングタスクのための、単純で動的で、常にスパースな事前学習手法を開発し、研究する。
粗い粒度のブロック間隔を使用する場合、トレーニングはFLOP効率を保ち、現代のハードウェアアクセラレーター上での効率的な実行を特に有望であることを示す。
論文 参考訳(メタデータ) (2021-08-13T14:54:26Z) - Self Normalizing Flows [65.73510214694987]
本稿では,各層における学習された近似逆数により,勾配の高価な項を置き換えることで,フローの正規化を訓練するための柔軟なフレームワークを提案する。
これにより、各レイヤの正確な更新の計算複雑性が$mathcalO(D3)$から$mathcalO(D2)$に削減される。
実験により,これらのモデルは非常に安定であり,正確な勾配値と類似したデータ可能性値に最適化可能であることが示された。
論文 参考訳(メタデータ) (2020-11-14T09:51:51Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
本稿では,FGA(Fast Gravitational Approach)と呼ばれる厳密な点集合アライメントのための物理に基づく新しい手法を紹介する。
FGAでは、ソースとターゲットの点集合は、シミュレーションされた重力場内を移動しながら、世界規模で多重リンクされた方法で相互作用する質量を持つ剛体粒子群として解釈される。
従来のアライメント手法では,新しいメソッドクラスには特徴がないことを示す。
論文 参考訳(メタデータ) (2020-09-28T15:05:39Z) - Active learning of deep surrogates for PDEs: Application to metasurface
design [30.731619528075214]
本稿では,光表面成分のニューラルネットワーク・サロゲートモデルにおいて,トレーニングポイント数を桁違いに削減する能動的学習アルゴリズムを提案する。
その結果,サロゲート評価は直接解よりも2桁以上高速であり,大規模工学最適化の高速化にどのように活用できるかを実証した。
論文 参考訳(メタデータ) (2020-08-24T17:14:13Z) - Towards High Performance Relativistic Electronic Structure Modelling:
The EXP-T Program Package [68.8204255655161]
並列計算機用に設計されたFS-RCC方式の新たな実装を提案する。
実装のパフォーマンスとスケーリングの特徴を分析した。
開発されたソフトウェアは、重い超重核を含む原子や分子の性質を予測するための全く新しいレベルの精度を達成することができる。
論文 参考訳(メタデータ) (2020-04-07T20:08:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。