論文の概要: Preconditioned Additive Gaussian Processes with Fourier Acceleration
- arxiv url: http://arxiv.org/abs/2504.00480v1
- Date: Tue, 01 Apr 2025 07:14:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 15:43:08.974033
- Title: Preconditioned Additive Gaussian Processes with Fourier Acceleration
- Title(参考訳): フーリエ加速による事前条件付加法ガウス過程
- Authors: Theresa Wagner, Tianshi Xu, Franziska Nestler, Yuanzhe Xi, Martin Stoll,
- Abstract要約: 本稿では,カーネル行列とその導関数の乗算において,ほぼ線形な複雑性を実現するための行列フリー手法を提案する。
高次元問題に対処するために,加法的カーネルアプローチを提案する。
各サブカーネルは低次の特徴相互作用をキャプチャし、NFFT法の効率的な適用を可能にする。
- 参考スコア(独自算出の注目度): 2.292881746604941
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes (GPs) are crucial in machine learning for quantifying uncertainty in predictions. However, their associated covariance matrices, defined by kernel functions, are typically dense and large-scale, posing significant computational challenges. This paper introduces a matrix-free method that utilizes the Non-equispaced Fast Fourier Transform (NFFT) to achieve nearly linear complexity in the multiplication of kernel matrices and their derivatives with vectors for a predetermined accuracy level. To address high-dimensional problems, we propose an additive kernel approach. Each sub-kernel in this approach captures lower-order feature interactions, allowing for the efficient application of the NFFT method and potentially increasing accuracy across various real-world datasets. Additionally, we implement a preconditioning strategy that accelerates hyperparameter tuning, further improving the efficiency and effectiveness of GPs.
- Abstract(参考訳): ガウス過程(GP)は予測の不確実性を定量化する機械学習において重要である。
しかしながら、カーネル関数によって定義されるそれらの共分散行列は典型的には密度が高く、大規模であり、重要な計算上の課題を提起する。
本稿では,NFFT(Non-equispaced Fast Fourier Transform)を用いた行列自由化手法を提案する。
高次元問題に対処するために,加法的カーネルアプローチを提案する。
このアプローチの各サブカーネルは、低次の機能インタラクションをキャプチャし、NFFTメソッドの効率的な適用を可能にし、さまざまな実世界のデータセットにわたって精度が向上する可能性がある。
さらに,ハイパーパラメータチューニングを高速化し,GPの効率と有効性をさらに向上するプレコンディショニング戦略を実装した。
関連論文リスト
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
ガウス過程状態空間モデル(GPSSM)は動的システムのモデリングのための強力なフレームワークとして登場した。
本稿では,これらの制約に対処するため,効率的に変換されたガウス過程状態空間モデル(ETGPSSM)を提案する。
提案手法は,単一共有ガウス過程(GP)と正規化フローとベイズニューラルネットワークを組み合わせることで,複雑な高次元状態遷移の効率的なモデリングを可能にする。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - A quantum gradient descent algorithm for optimizing Gaussian Process models [28.16587217223671]
ガウス過程モデルを最適化するための量子勾配降下アルゴリズムを提案する。
本アルゴリズムは,ログ限界確率の勾配の計算において指数的高速化を実現する。
論文 参考訳(メタデータ) (2025-03-22T14:14:31Z) - Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - The Stochastic Conjugate Subgradient Algorithm For Kernel Support Vector Machines [1.738375118265695]
本稿では,カーネルサポートベクトルマシン(SVM)に特化して設計された革新的な手法を提案する。
イテレーション毎のイテレーションを高速化するだけでなく、従来のSFO技術と比較して収束度も向上する。
実験の結果,提案アルゴリズムはSFO法のスケーラビリティを維持できるだけでなく,潜在的に超越していることが示された。
論文 参考訳(メタデータ) (2024-07-30T17:03:19Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains [13.56018270837999]
本稿では,ニューラルネットワークを任意の領域に拡張する簡単な手法を提案する。
このような直接スペクトル評価の効率的な実装*は、既存のニューラル演算子モデルと結合する。
提案手法により,ニューラルネットワークを任意の点分布に拡張し,ベースライン上でのトレーニング速度を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-05-31T09:01:20Z) - Linear Self-Attention Approximation via Trainable Feedforward Kernel [77.34726150561087]
高速な計算を追求する中で、効率的なトランスフォーマーは印象的な様々なアプローチを実証している。
我々は,トランスフォーマーアーキテクチャの自己保持機構を近似するために,トレーニング可能なカーネルメソッドのアイデアを拡張することを目指している。
論文 参考訳(メタデータ) (2022-11-08T08:14:11Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Scalable Gaussian Process Hyperparameter Optimization via Coverage
Regularization [0.0]
本稿では,予測の不確かさの堅牢性を改善するために,Maternカーネルのスムーズさと長大パラメータを推定するアルゴリズムを提案する。
数値実験で示すように,高いスケーラビリティを維持しつつ,残余可能性よりも改善されたUQを実現する。
論文 参考訳(メタデータ) (2022-09-22T19:23:37Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,この問題に対するアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
プレコンディショニングは、行列ベクトル乗算を含む反復的な方法にとって非常に効果的なステップである。
プレコンディショニングには、これまで検討されていなかった付加的なメリットがあることを実証する。
基本的に無視可能なコストで、同時に分散を低減することができる。
論文 参考訳(メタデータ) (2021-07-01T06:43:11Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - The Fast Kernel Transform [21.001203328543006]
本稿では,FKT(Fast Kernel Transform:高速カーネル変換)を提案する。
FKT はガウス、マテルン、ラショナル四次共分散関数や物理的に動機付けられたグリーン関数など、幅広い種類のカーネルに容易に適用できる。
本稿では、時間と精度のベンチマークを提供することによりFKTの有効性と汎用性を説明し、それを近隣埋め込み(t-SNE)とガウス過程を大規模実世界のデータセットに拡張する。
論文 参考訳(メタデータ) (2021-06-08T16:15:47Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Certified and fast computations with shallow covariance kernels [0.0]
パラメータ化された共分散演算子の族を低ランクで近似するアルゴリズムを新たに導入し,解析する。
提案アルゴリズムは,パラメータ依存確率場に対する高速サンプリング法の基礎を提供する。
論文 参考訳(メタデータ) (2020-01-24T20:28:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。