論文の概要: ManiFeSt: Manifold-based Feature Selection for Small Data Sets
- arxiv url: http://arxiv.org/abs/2207.08574v1
- Date: Mon, 18 Jul 2022 12:58:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 16:18:43.240217
- Title: ManiFeSt: Manifold-based Feature Selection for Small Data Sets
- Title(参考訳): ManiFeSt: 小さなデータセットのための Manifold ベースの特徴選択
- Authors: David Cohen, Tal Shnitzer, Yuval Kluger and Ronen Talmon
- Abstract要約: 少数サンプル教師付き特徴選択(FS)のための新しい手法を提案する。
提案手法はまず,多機能アソシエーションをキャプチャするカーネルを用いて,各クラスの特徴空間の多様体を学習する。
テストデータに適用した場合,FSにより分類が向上し,一般化が向上することを示す。
- 参考スコア(独自算出の注目度): 9.649457851261909
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a new method for few-sample supervised feature
selection (FS). Our method first learns the manifold of the feature space of
each class using kernels capturing multi-feature associations. Then, based on
Riemannian geometry, a composite kernel is computed, extracting the differences
between the learned feature associations. Finally, a FS score based on spectral
analysis is proposed. Considering multi-feature associations makes our method
multivariate by design. This in turn allows for the extraction of the hidden
manifold underlying the features and avoids overfitting, facilitating
few-sample FS. We showcase the efficacy of our method on illustrative examples
and several benchmarks, where our method demonstrates higher accuracy in
selecting the informative features compared to competing methods. In addition,
we show that our FS leads to improved classification and better generalization
when applied to test data.
- Abstract(参考訳): 本稿では,少数サンプル教師付き特徴選択(FS)のための新しい手法を提案する。
本手法は,マルチ機能関係を捉えるカーネルを用いて,まず各クラスの特徴空間の多様体を学習する。
次に、リーマン幾何学に基づいて複合核を計算し、学習された特徴関係の違いを抽出する。
最後に,スペクトル分析に基づくFSスコアを提案する。
多機能アソシエーションを考えると、この手法は設計によって多変量化される。
これにより、特徴の根底にある隠された多様体の抽出が可能になり、オーバーフィッティングを回避し、少数のサンプルFSを容易にすることができる。
提案手法の有効性を実例といくつかのベンチマークで示し,提案手法は競合手法と比較して情報的特徴の選択において高い精度を示す。
さらに,テストデータに適用した場合,FSにより分類が向上し,一般化が向上することを示す。
関連論文リスト
- A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
本稿では,セマンティック・アウェアとディテール・アウェアの両方の観点から,明示的に制御可能なクエリキー機能アライメントを提案する。
また,モーザイクアーティファクトを緩和するのには単純だが有効であるHR特徴量に対して,きめ細かな近傍選択戦略を開発した。
提案するReSFUフレームワークは,異なるセグメンテーションアプリケーション上での良好な性能を一貫して達成する。
論文 参考訳(メタデータ) (2024-07-02T14:12:21Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - A Contrast Based Feature Selection Algorithm for High-dimensional Data
set in Machine Learning [9.596923373834093]
本稿では,異なるクラス間で示される相違点に基づいて識別的特徴を抽出する新しいフィルタ特徴選択手法であるContrastFSを提案する。
提案手法の有効性と有効性について検証し,提案手法が無視可能な計算で良好に動作することを示す。
論文 参考訳(メタデータ) (2024-01-15T05:32:35Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - FeCAM: Exploiting the Heterogeneity of Class Distributions in
Exemplar-Free Continual Learning [21.088762527081883]
Exemplar-free class-incremental learning (CIL)は、以前のタスクからのデータのリハーサルを禁止しているため、いくつかの課題がある。
第1タスクの後に特徴抽出器を凍結して分類器を漸進的に学習する手法が注目されている。
凍結した特徴抽出器を用いて新しいクラスプロトタイプを生成するCILのプロトタイプネットワークを探索し,プロトタイプとのユークリッド距離に基づいて特徴を分類する。
論文 参考訳(メタデータ) (2023-09-25T11:54:33Z) - A Supervised Feature Selection Method For Mixed-Type Data using
Density-based Feature Clustering [1.3048920509133808]
本稿では、密度ベース特徴クラスタリング(SFSDFC)を用いた教師付き特徴選択法を提案する。
SFSDFCは、新しい密度に基づくクラスタリング法を用いて、特徴空間を不連続な特徴クラスタの集合に分解する。
そして、これらの特徴クラスタから最小限の冗長性を持つ重要な特徴のサブセットを得るために、効果的な特徴選択戦略を採用する。
論文 参考訳(メタデータ) (2021-11-10T15:05:15Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
本研究は,マルチラベル分類を管理するための新しいアンサンブル手法を提案する。
提案手法のコアは,Adamグラデーション最適化アプローチの変種で訓練された,ゲート再帰単位と時間畳み込みニューラルネットワークの組み合わせである。
論文 参考訳(メタデータ) (2021-10-09T00:00:16Z) - Beyond Farthest Point Sampling in Point-Wise Analysis [52.218037492342546]
本稿では,ポイントワイズ分析タスクのための新しいデータ駆動型サンプル学習手法を提案する。
我々はサンプルと下流のアプリケーションを共同で学習する。
実験により, 従来のベースライン法に比べて, サンプルとタスクの同時学習が顕著に改善することが示された。
論文 参考訳(メタデータ) (2021-07-09T08:08:44Z) - Feature Selection for Imbalanced Data with Deep Sparse Autoencoders
Ensemble [0.5352699766206808]
クラスの不均衡は、学習アルゴリズムの多くのドメインアプリケーションで一般的な問題です。
本稿では,Deep Sparse AutoEncoders Ensembleの再構成誤差に基づいて,フィルタFSアルゴリズムのランク付け機能を提案する。
サンプルサイズの異なる高次元データセットに対する実験において,本アルゴリズムの有効性を実証的に実証した。
論文 参考訳(メタデータ) (2021-03-22T09:17:08Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
論文 参考訳(メタデータ) (2020-03-20T15:44:17Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
組込み特徴選択(ODEFS)を用いた外乱検出アンサンブルフレームワークを提案する。
各ランダムなサブサンプリングベースの学習コンポーネントに対して、ODEFSは、特徴選択と外れ値検出をペアのランキング式に統一する。
我々は、特徴選択と例選択を同時に最適化するために閾値付き自己評価学習を採用する。
論文 参考訳(メタデータ) (2020-01-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。