論文の概要: Probabilistic Reconciliation of Count Time Series
- arxiv url: http://arxiv.org/abs/2207.09322v4
- Date: Wed, 26 Apr 2023 15:03:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 18:25:53.824618
- Title: Probabilistic Reconciliation of Count Time Series
- Title(参考訳): カウント時系列の確率的再調
- Authors: Giorgio Corani, Dario Azzimonti, Nicol\`o Rubattu
- Abstract要約: 本稿では,コヒーレンシの定義と確率予測の整合性を提案する。
これは実数値変数と数変数の両方に適用できる。
これはベイズの法則の一般化に基づいており、実値変数と数変数の両方を調合することができる。
- 参考スコア(独自算出の注目度): 0.6810856082577402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecast reconciliation is an important research topic. Yet, there is
currently neither formal framework nor practical method for the probabilistic
reconciliation of count time series. In this paper we propose a definition of
coherency and reconciled probabilistic forecast which applies to both
real-valued and count variables and a novel method for probabilistic
reconciliation. It is based on a generalization of Bayes' rule and it can
reconcile both real-value and count variables. When applied to count variables,
it yields a reconciled probability mass function. Our experiments with the
temporal reconciliation of count variables show a major forecast improvement
compared to the probabilistic Gaussian reconciliation.
- Abstract(参考訳): 予測和解は重要な研究テーマである。
しかし、現在数列の確率的和解のための形式的枠組みや実践的手法は存在しない。
本稿では,実数値変数と数変数の両方に適用可能な整合性および整合確率予測の定義と,確率整合の新しい手法を提案する。
これはベイズの法則の一般化に基づいており、実値と数変数の両方を調整できる。
カウント変数に適用すると、調整された確率質量関数が得られる。
数変数の時間的調整による実験は,確率的ガウス和合に比べて大きな予測改善を示した。
関連論文リスト
- When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Better Batch for Deep Probabilistic Time Series Forecasting [15.31488551912888]
本稿では,確率的予測精度を高めるために,誤り自己相関を取り入れた新しいトレーニング手法を提案する。
本手法は,モデルトレーニングのためのD$連続時系列セグメントのコレクションとしてミニバッチを構築する。
各ミニバッチ上で時間変化の共分散行列を明示的に学習し、隣接する時間ステップ間の誤差相関を符号化する。
論文 参考訳(メタデータ) (2023-05-26T15:36:59Z) - Inferential Moments of Uncertain Multivariable Systems [0.0]
我々はベイズ確率の更新をランダムなプロセスとして扱い、推論モーメントと呼ばれる結合確率分布の固有量的特徴を明らかにする。
推論モーメントは、まだ取得されていない情報に応じて、事前分布がどのように更新されるかについての形状情報を定量化する。
情報理論の要素と推論理論の関連性を示す推論モーメントの観点から,相互情報の時系列展開を求める。
論文 参考訳(メタデータ) (2023-05-03T00:56:12Z) - Efficient probabilistic reconciliation of forecasts for real-valued and
count time series [0.840358257755792]
本研究では,任意の種類の予測分布を調整するための条件付けに基づく新しい手法を提案する。
次にBottom-Up Smplingと呼ばれる新しいアルゴリズムを導入し、再構成された分布から効率的にサンプリングする。
論文 参考訳(メタデータ) (2022-10-05T14:22:24Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - MECATS: Mixture-of-Experts for Quantile Forecasts of Aggregated Time
Series [11.826510794042548]
我々はtexttMECATS という異種の専門家フレームワークを混合して導入する。
集約階層を通じて関連付けられた時系列の集合の値を同時に予測する。
異なる種類の予測モデルを個別の専門家として使用することで、各モデルの形式を対応する時系列の性質に合わせて調整することができる。
論文 参考訳(メタデータ) (2021-12-22T05:05:30Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Comparing Sequential Forecasters [35.38264087676121]
2つの予測器を考えてみましょう。それぞれが時間とともに一連のイベントを予測します。
オンラインでもポストホックでも、予測と結果がどのように生成されたかの検証不可能な仮定を避けながら、これらの予測をどのように比較すればよいのか?
予測スコアの時間差を推定するための新しい逐次推論手法を提案する。
実世界の野球と天気予報機を比較することで,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2021-09-30T22:54:46Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。