Sparse-based Domain Adaptation Network for OCTA Image Super-Resolution
Reconstruction
- URL: http://arxiv.org/abs/2207.11882v1
- Date: Mon, 25 Jul 2022 02:59:11 GMT
- Title: Sparse-based Domain Adaptation Network for OCTA Image Super-Resolution
Reconstruction
- Authors: Huaying Hao, Cong Xu, Dan Zhang, Qifeng Yan, Jiong Zhang, Yue Liu,
Yitian Zhao
- Abstract summary: We propose a novel Sparse-based domain Adaptation Super-Resolution network (SASR) for the reconstruction of realistic 6x6 mm2/low-resolution (LR) OCTA images to high-resolution (HR) representations.
Experiments on two OCTA sets have shown that our method performs better than state-of-the-art super-resolution reconstruction methods.
- Score: 24.118675257774655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinal Optical Coherence Tomography Angiography (OCTA) with high-resolution
is important for the quantification and analysis of retinal vasculature.
However, the resolution of OCTA images is inversely proportional to the field
of view at the same sampling frequency, which is not conducive to clinicians
for analyzing larger vascular areas. In this paper, we propose a novel
Sparse-based domain Adaptation Super-Resolution network (SASR) for the
reconstruction of realistic 6x6 mm2/low-resolution (LR) OCTA images to
high-resolution (HR) representations. To be more specific, we first perform a
simple degradation of the 3x3 mm2/high-resolution (HR) image to obtain the
synthetic LR image. An efficient registration method is then employed to
register the synthetic LR with its corresponding 3x3 mm2 image region within
the 6x6 mm2 image to obtain the cropped realistic LR image. We then propose a
multi-level super-resolution model for the fully-supervised reconstruction of
the synthetic data, guiding the reconstruction of the realistic LR images
through a generative-adversarial strategy that allows the synthetic and
realistic LR images to be unified in the feature domain. Finally, a novel
sparse edge-aware loss is designed to dynamically optimize the vessel edge
structure. Extensive experiments on two OCTA sets have shown that our method
performs better than state-of-the-art super-resolution reconstruction methods.
In addition, we have investigated the performance of the reconstruction results
on retina structure segmentations, which further validate the effectiveness of
our approach.
Related papers
- Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - Real-World Image Super Resolution via Unsupervised Bi-directional Cycle
Domain Transfer Learning based Generative Adversarial Network [14.898170534545727]
We propose the Unsupervised Bi-directional Cycle Domain Transfer Learning-based Generative Adrial Network (UBCDTLGAN)
First, the UBCDTN is able to produce an approximated real-like LR image through transferring the LR image from an artificially degraded domain to the real-world image domain.
Second, the SESRN has the ability to super-resolve the approximated real-like LR image to a photo-realistic HR image.
arXiv Detail & Related papers (2022-11-19T02:19:21Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - SRR-Net: A Super-Resolution-Involved Reconstruction Method for High
Resolution MR Imaging [7.42807471627113]
The proposed SRR-Net is capable of recovering high-resolution brain images with both good visual quality and perceptual quality.
Experiment results using in-vivo HR multi-coil brain data indicate that the proposed SRR-Net is capable of recovering high-resolution brain images.
arXiv Detail & Related papers (2021-04-13T02:19:12Z) - Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN [63.49373689654419]
We propose a new perception consistency ultrasound image super-resolution (SR) method based on self-supervision and cycle generative adversarial network (CycleGAN)
We first generate the HR fathers and the LR sons of the test ultrasound LR image through image enhancement.
We then make full use of the cycle loss of LR-SR-LR and HR-LR-SR and the adversarial characteristics of the discriminator to promote the generator to produce better perceptually consistent SR results.
arXiv Detail & Related papers (2020-12-28T08:24:04Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution [20.537597542144916]
We consider a deep cyclic network structure to maintain the domain consistency between the LR and HR data distributions.
We propose the Super-Resolution Residual Cyclic Generative Adversarial Network (SRResCycGAN) by training with a generative adversarial network (GAN) framework for the LR to HR domain translation.
arXiv Detail & Related papers (2020-09-07T11:11:18Z) - Joint Generative Learning and Super-Resolution For Real-World
Camera-Screen Degradation [6.14297871633911]
In real-world single image super-resolution (SISR) task, the low-resolution image suffers more complicated degradations.
In this paper, we focus on the camera-screen degradation and build a real-world dataset (Cam-ScreenSR)
We propose a joint two-stage model. Firstly, the downsampling degradation GAN(DD-GAN) is trained to model the degradation and produces more various of LR images.
Then the dual residual channel attention network (DuRCAN) learns to recover the SR image.
arXiv Detail & Related papers (2020-08-01T07:10:13Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
We propose a dual-branch convolutional neural network to extract base features and recovered features separately.
By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate the training process.
arXiv Detail & Related papers (2020-03-02T13:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.