論文の概要: A Multi-Party Dialogue Ressource in French
- arxiv url: http://arxiv.org/abs/2207.12162v1
- Date: Mon, 25 Jul 2022 13:02:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 14:10:44.285036
- Title: A Multi-Party Dialogue Ressource in French
- Title(参考訳): フランス語の多人数対話データベース
- Authors: Maria Boritchev (SEMAGRAMME, LORIA), Maxime Amblard (SEMAGRAMME,
LORIA)
- Abstract要約: ボードゲーム「カタン」のフランス語話者間の実生活、口頭、自発的な多人数対話を手書きするコーパス「DinG」を提示する。
我々の目的は、長い対話からなるフランス語の質の高いリソースを利用できるようにし、その学習を促進させることである(Asher et al., 2016)。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Dialogues in Games (DinG), a corpus of manual transcriptions of
real-life, oral, spontaneous multi-party dialogues between French-speaking
players of the board game Catan. Our objective is to make available a quality
resource for French, composed of long dialogues, to facilitate their study in
the style of (Asher et al., 2016). In a general dialogue setting, participants
share personal information, which makes it impossible to disseminate the
resource freely and openly. In DinG, the attention of the participants is
focused on the game, which prevents them from talking about themselves. In
addition, we are conducting a study on the nature of the questions in dialogue,
through annotation (Cruz Blandon et al., 2019), in order to develop more
natural automatic dialogue systems.
- Abstract(参考訳): ボードゲーム「カタン」のフランス語話者間における,実生活,口頭,自発的多人数対話の書き起こしコーパスであるゲーム(ding)における対話について述べる。
我々の目標は、長文対話からなるフランス語の質の高いリソースを提供することであり、その学習を促進させることである(Asher et al., 2016)。
一般的な対話では、参加者は個人情報を共有するため、リソースを自由にかつオープンに拡散することは不可能である。
DinGでは、参加者の注意がゲームに集中しているため、自分自身について話すことができない。
また,より自然な自動対話システムを開発するために,注記を通して,対話における質問の性質について検討している(cruz blandon et al., 2019)。
関連論文リスト
- LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
本研究では,人間とチャットボットの対話をシミュレートする多元多元対話を自動生成する,目標指向のペルソナに基づく手法を提案する。
本手法は,人間とチャットボットの対話を高い相違率でシミュレートすることができる。
論文 参考訳(メタデータ) (2024-07-04T14:49:46Z) - Long-Horizon Dialogue Understanding for Role Identification in the Game
of Avalon with Large Language Models [6.176709034158014]
Avalon: The Resistanceは、プレイヤーがチームの目的を達成するためにお互いの隠れたアイデンティティを判断しなければならない社会的推論ゲームである。
オンラインテストベッドと20個の慎重に収集・ラベル付けされたゲームを含むデータセットを導入する。
そこで本研究では,LLMが6人のプレイヤー間での知覚的長期会話を利用して,各プレイヤーの目標とモチベーションを決定する能力について論じる。
論文 参考訳(メタデータ) (2023-11-09T20:04:08Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
本報告では,人間型マルチターンチャットのための既存大規模言語モデルの予備的評価を行う。
そこで我々は,ChatSEEDに基づくマルチターン対話を発話によって生成する大規模言語モデル(LLM)を提案する。
GPT-4は優れた品質の人型多元対話を生成できるが、その性能は著しく上回っている。
論文 参考訳(メタデータ) (2023-10-20T16:53:51Z) - Towards human-like spoken dialogue generation between AI agents from
written dialogue [8.4989907582951]
本研究では,CHATS - CHATS-CHATty Agents Text-to-Speechを提案する。
本システムでは,話者側とリスナー側の両方に対して,話者側からの書き起こしのみを用いて同時に音声を生成することができる。
論文 参考訳(メタデータ) (2023-10-02T11:03:20Z) - A Benchmark for Understanding and Generating Dialogue between Characters
in Stories [75.29466820496913]
本研究は,機械が物語の対話を理解・生成できるかどうかを探求する最初の研究である。
マスク付き対話生成と対話話者認識という2つの新しいタスクを提案する。
DialStoryの自動評価と手動評価で既存のモデルをテストすることで,提案課題の難しさを示す。
論文 参考訳(メタデータ) (2022-09-18T10:19:04Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
我々は、強化学習を用いて、近視性(一般的な発話の出力)を回避し、全体的なユーザ満足度を最大化する対話エージェントを開発する。
既存のRLアプローチのほとんどは、単語レベルでエージェントを訓練するので、中規模の語彙であっても、非常に複雑なアクション空間を扱う必要がある。
i)会話履歴の多様な意味を学習できるLMと、(ii)対応する発話を生成できる専門的なLM(または専門家)からなる、新しい専門家言語モデル(MoE-LM)を用いたRLベースのDMを開発する。
論文 参考訳(メタデータ) (2022-05-31T19:00:41Z) - SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues [22.89699254073016]
ソーシャルチャットからタスク指向対話へのスムーズな移行は、ビジネスチャンスの引き金になる上で重要である。
本稿では,人間の介在なく多数の対話を自動生成するフレームワークを提案する。
公表されたデータは、将来の研究方向と商業活動のガイドとなる大きな可能性を秘めている。
論文 参考訳(メタデータ) (2022-04-22T09:31:13Z) - Structural Modeling for Dialogue Disentanglement [43.352833140317486]
マルチパーティ対話コンテキスト マルチパーティ対話コンテキストは、対話読解の課題に繋がる。
本研究は,対話構造の特徴を考慮に入れて,複数パーティ履歴をスレッドにアンタングルする新しいモデルを設計する。
論文 参考訳(メタデータ) (2021-10-15T11:28:43Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
対話モデリングの観点から,従来の手法を検討した。
対話理解タスクで広く使用されている対話モデリングの3つの典型的なパターンについて議論します。
論文 参考訳(メタデータ) (2021-03-04T15:50:17Z) - Attention over Parameters for Dialogue Systems [69.48852519856331]
我々は,異なる対話スキルを個別にパラメータ化する対話システムを学び,AoP(Attention over Parameters)を通じてそれぞれを選択し,組み合わせることを学ぶ。
実験の結果,MultiWOZ,In-Car Assistant,Persona-Chatの複合データセット上での競合性能が得られた。
論文 参考訳(メタデータ) (2020-01-07T03:10:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。