Decentralized digital twins of complex dynamical systems
- URL: http://arxiv.org/abs/2207.12245v1
- Date: Thu, 7 Jul 2022 19:44:42 GMT
- Title: Decentralized digital twins of complex dynamical systems
- Authors: Omer San, Suraj Pawar, Adil Rasheed
- Abstract summary: We introduce a decentralized twin (DDT) framework for dynamical systems.
We discuss the prospects of the DDT paradigm in computational science and engineering applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a decentralized digital twin (DDT) framework for
dynamical systems and discuss the prospects of the DDT modeling paradigm in
computational science and engineering applications. The DDT approach is built
on a federated learning concept, a branch of machine learning that encourages
knowledge sharing without sharing the actual data. This approach enables
clients to collaboratively learn an aggregated model while keeping all the
training data on each client. We demonstrate the feasibility of the DDT
framework with various dynamical systems, which are often considered prototypes
for modeling complex transport phenomena in spatiotemporally extended systems.
Our results indicate that federated machine learning might be a key enabler for
designing highly accurate decentralized digital twins in complex nonlinear
spatiotemporal systems.
Related papers
- Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry [1.1060425537315088]
Digital Twins (DTs) are virtual replicas of physical manufacturing systems that combine sensor data with sophisticated data-based or physics-based models, or a combination thereof, to tackle a variety of industrial-relevant tasks like process monitoring, predictive control or decision support.
The backbone of a DT, i.e. the concrete modelling methodologies and architectural frameworks supporting these models, are complex, diverse and evolve fast, necessitating a thorough understanding of the latest state-of-the-art methods and trends to stay on top of a highly competitive market.
arXiv Detail & Related papers (2024-07-02T14:05:10Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Constructing and Evaluating Digital Twins: An Intelligent Framework for DT Development [11.40908718824589]
Development of Digital Twins (DTs) represents a transformative advance for simulating and optimizing complex systems in a controlled digital space.
This paper introduces an intelligent framework for the construction and evaluation of DTs, specifically designed to enhance the accuracy and utility of DTs in testing algorithmic performance.
We propose a novel construction methodology that integrates deep learning-based policy gradient techniques to dynamically tune the DT parameters, ensuring high fidelity in the digital replication of physical systems.
arXiv Detail & Related papers (2024-06-19T01:45:18Z) - From Digital Twins to Digital Twin Prototypes: Concepts, Formalization,
and Applications [55.57032418885258]
There is no consensual definition of what a digital twin is.
Our digital twin prototype (DTP) approach supports engineers during the development and automated testing of embedded software systems.
arXiv Detail & Related papers (2024-01-15T22:13:48Z) - Digital Twin Framework for Optimal and Autonomous Decision-Making in
Cyber-Physical Systems: Enhancing Reliability and Adaptability in the Oil and
Gas Industry [0.0]
This work proposes a digital twin framework for optimal and autonomous decision-making applied to a gas-lift process in the oil and gas industry.
The framework combines Bayesian inference, Monte Carlo simulations, transfer learning, online learning, and novel strategies to confer cognition to the DT.
arXiv Detail & Related papers (2023-11-21T18:02:52Z) - Prospects of federated machine learning in fluid dynamics [0.0]
In recent years, machine learning has offered a renaissance to the fluid community due to the rapid developments in data science.
In this letter, we present a federated machine learning approach that enables localized to collaboratively learn an aggregated shared predictive model.
We demonstrate the feasibility and prospects of such decentralized learning approach with an effort to forge a deep learning surrogate model for reconstructingtemporal fields.
arXiv Detail & Related papers (2022-08-15T06:15:04Z) - Automatic digital twin data model generation of building energy systems
from piping and instrumentation diagrams [58.720142291102135]
We present an approach to recognize symbols and connections of P&ID from buildings in a completely automated way.
We apply algorithms for symbol recognition, line recognition and derivation of connections to the data sets.
The approach can be used in further processes like control generation, (distributed) model predictive control or fault detection.
arXiv Detail & Related papers (2021-08-31T15:09:39Z) - Multi-Robot Deep Reinforcement Learning for Mobile Navigation [82.62621210336881]
We propose a deep reinforcement learning algorithm with hierarchically integrated models (HInt)
At training time, HInt learns separate perception and dynamics models, and at test time, HInt integrates the two models in a hierarchical manner and plans actions with the integrated model.
Our mobile navigation experiments show that HInt outperforms conventional hierarchical policies and single-source approaches.
arXiv Detail & Related papers (2021-06-24T19:07:40Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Machine learning based digital twin for dynamical systems with multiple
time-scales [0.0]
Digital twin technology has a huge potential for widespread applications in different industrial sectors such as infrastructure, aerospace, and automotive.
Here we focus on a digital twin framework for linear single-degree-of-freedom structural dynamic systems evolving in two different operational time scales.
arXiv Detail & Related papers (2020-05-12T15:33:25Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.