Tangential Wasserstein Projections
- URL: http://arxiv.org/abs/2207.14727v1
- Date: Fri, 29 Jul 2022 14:59:58 GMT
- Title: Tangential Wasserstein Projections
- Authors: Florian Gunsilius, Meng Hsuan Hsieh, Myung Jin Lee
- Abstract summary: We develop a notion of projections between sets of probability measures using the geometric properties of the 2-Wasserstein space.
The idea is to work on regular tangent cones of the Wasserstein space using generalized geodesics.
- Score: 0.4297070083645048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a notion of projections between sets of probability measures using
the geometric properties of the 2-Wasserstein space. It is designed for general
multivariate probability measures, is computationally efficient to implement,
and provides a unique solution in regular settings. The idea is to work on
regular tangent cones of the Wasserstein space using generalized geodesics. Its
structure and computational properties make the method applicable in a variety
of settings, from causal inference to the analysis of object data. An
application to estimating causal effects yields a generalization of the notion
of synthetic controls to multivariate data with individual-level heterogeneity,
as well as a way to estimate optimal weights jointly over all time periods.
Related papers
- Statistical, Robustness, and Computational Guarantees for Sliced
Wasserstein Distances [18.9717974398864]
Sliced Wasserstein distances preserve properties of classic Wasserstein distances while being more scalable for computation and estimation in high dimensions.
We quantify this scalability from three key aspects: (i) empirical convergence rates; (ii) robustness to data contamination; and (iii) efficient computational methods.
arXiv Detail & Related papers (2022-10-17T15:04:51Z) - Nonlinear Sufficient Dimension Reduction for
Distribution-on-Distribution Regression [9.086237593805173]
We introduce a new approach to nonlinear sufficient dimension reduction in cases where both the predictor and the response are distributional data.
Our key step is to build universal kernels (cc-universal) on the metric spaces.
arXiv Detail & Related papers (2022-07-11T04:11:36Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
We propose a new formulation and learning strategy for computing the Wasserstein geodesic between two probability distributions in high dimensions.
By applying the method of Lagrange multipliers to the dynamic formulation of the optimal transport (OT) problem, we derive a minimax problem whose saddle point is the Wasserstein geodesic.
We then parametrize the functions by deep neural networks and design a sample based bidirectional learning algorithm for training.
arXiv Detail & Related papers (2021-02-05T04:25:28Z) - Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric [0.0]
We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line.
We focus in particular on Principal Component Analysis (PCA) and regression.
Several theoretical properties of the models are investigated and consistency is proven.
arXiv Detail & Related papers (2021-01-22T10:24:49Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Two-sample Test using Projected Wasserstein Distance [18.46110328123008]
We develop a projected Wasserstein distance for the two-sample test, a fundamental problem in statistics and machine learning.
A key contribution is to couple optimal projection to find the low dimensional linear mapping to maximize the Wasserstein distance between projected probability distributions.
arXiv Detail & Related papers (2020-10-22T18:08:58Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Projection Robust Wasserstein Distance and Riemannian Optimization [107.93250306339694]
We show that projection robustly solidstein (PRW) is a robust variant of Wasserstein projection (WPP)
This paper provides a first step into the computation of the PRW distance and provides the links between their theory and experiments on and real data.
arXiv Detail & Related papers (2020-06-12T20:40:22Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.