論文の概要: e-Genia3 An AgentSpeak extension for empathic agents
- arxiv url: http://arxiv.org/abs/2208.00737v1
- Date: Mon, 1 Aug 2022 10:53:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-02 14:39:36.901477
- Title: e-Genia3 An AgentSpeak extension for empathic agents
- Title(参考訳): e-Genia3 共感的エージェントのためのAgentSpeak拡張
- Authors: Joaquin Taverner, Emilio Vivancos, and Vicente Botti
- Abstract要約: e-Genia3は、共感的エージェントの開発を支援するためのAgentSpeakの拡張である。
e-Genia3は、分析された事象と、エージェントの感情状態と性格に応じて、エージェントの推論プロセスを選択プランに修正する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we present e-Genia3 an extension of AgentSpeak to provide
support to the development of empathic agents. The new extension modifies the
agent's reasoning processes to select plans according to the analyzed event and
the affective state and personality of the agent. In addition, our proposal
allows a software agent to simulate the distinction between self and other
agents through two different event appraisal processes: the empathic appraisal
process, for eliciting emotions as a response to other agents emotions, and the
regular affective appraisal process for other non-empathic affective events.
The empathic regulation process adapts the elicited empathic emotion based on
intrapersonal factors (e.g., the agent's personality and affective memory) and
interpersonal characteristics of the agent (e.g., the affective link between
the agents). The use of a memory of past events and their corresponding
elicited emotions allows the maintaining of an affective link to support
long-term empathic interaction between agents.
- Abstract(参考訳): 本稿では,e-Genia3にAgentSpeakを拡張して,共感エージェントの開発を支援する。
新たな拡張により、エージェントの推論プロセスは、分析されたイベントとエージェントの感情状態と性格に応じてプランを選択する。
さらに,提案手法では,他者の感情に対する反応として感情を誘発する共感的評価プロセスと,他の共感的でない感情的事象に対する通常の感情的評価プロセスという2つの異なる事象評価プロセスを通じて,自己と他のエージェントの区別をシミュレートすることができる。
共感的調節過程は、個人内要因(例えば、エージェントの性格と感情記憶)とエージェントの対人的特徴(例えば、エージェント間の感情的リンク)に基づいて、誘発された共感的感情を適応させる。
過去の出来事の記憶とそれに対応する感情の使用は、エージェント間の長期的な共感的相互作用をサポートする感情的リンクの維持を可能にする。
関連論文リスト
- Cause-Aware Empathetic Response Generation via Chain-of-Thought Fine-Tuning [12.766893968788263]
共感反応生成は、対話の文脈を理解し、表現された感情に反応する能力を持つエージェントを与える。
先行研究は、主に話者の感情的ラベルを活用することに重点を置いているが、感情の重要性が原因の推論を無視している。
そこで我々は,感情と原因をうまく設計したChain-of-Thoughtプロンプトを通じて統合した原因認識型共感生成手法を提案する。
論文 参考訳(メタデータ) (2024-08-21T13:11:03Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
ダイアログシステムに与えられた個性に基づいて感情を生成する新しいタスクであるパーソナリティ影響感情生成を提案する。
本課題の課題,すなわち,(1)個性と感情的要因を不均一に統合し,(2)対話場面における多粒性感情情報を抽出する。
その結果,感情生成性能はマクロF1では13%,重み付きF1では5%向上することが示唆された。
論文 参考訳(メタデータ) (2024-04-03T08:48:50Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Affective Conversational Agents: Understanding Expectations and Personal
Influences [17.059654991560105]
様々なアプリケーションにおける情緒的スキルに対する期待と嗜好を理解するため,745人の回答者を対象に調査を行った。
以上の結果から,人間のインタラクション,情緒的サポート,創造的タスクを含むシナリオの選好が示唆された。
全体として、AIエージェントの望ましい感情的スキルは、アプリケーションのコンテキストと性質に大きく依存する。
論文 参考訳(メタデータ) (2023-10-19T04:33:18Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
情緒的対話生成のためのシリアル・アンド・感情知識相互作用(SEEK)法を提案する。
我々は,会話中の感情のダイナミックス(感情の流れ)に敏感な微粒なエンコーディング戦略を用いて,応答の感情依存特性を予測するとともに,知識と感情の相互作用をモデル化し,より敏感な応答を生成する新しい枠組みを設計する。
論文 参考訳(メタデータ) (2022-10-21T03:51:18Z) - Empathetic Response Generation with State Management [32.421924357260075]
共感的反応生成の目標は、会話における感情を知覚し表現する対話システムの能力を高めることである。
感情や意図を含む複数の状態情報を同時に考察できる新しい共感応答生成モデルを提案する。
実験の結果、異なる情報を動的に管理することは、モデルがより共感的な反応を生成するのに役立つことが示された。
論文 参考訳(メタデータ) (2022-05-07T16:17:28Z) - Learning Proxemic Behavior Using Reinforcement Learning with Cognitive
Agents [1.0635883951034306]
プロキシミクス(英: Proxemics)は、人や動物の空間行動を研究する非言語コミュニケーションの一分野である。
本研究では, エージェントが環境中でどのように振る舞うかを, 確率的行動に基づいて検討する。
論文 参考訳(メタデータ) (2021-08-08T20:45:34Z) - Towards Socially Intelligent Agents with Mental State Transition and
Human Utility [97.01430011496576]
対話エージェントに精神状態と実用性モデルを取り入れることを提案する。
ハイブリッド精神状態は、対話とイベント観察の両方から情報を抽出する。
ユーティリティモデルは、クラウドソースのソーシャルコモンセンスデータセットから人間の好みを学習するランキングモデルである。
論文 参考訳(メタデータ) (2021-03-12T00:06:51Z) - Investigating Human Response, Behaviour, and Preference in Joint-Task
Interaction [3.774610219328564]
我々は、説明可能な計画(XAIP)エージェントと相互作用する人間の行動と反応を調べる実験を設計した。
また,シミュレーションユーザに対する2つのエージェントの挙動を実証分析により検討した。
論文 参考訳(メタデータ) (2020-11-27T22:16:59Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
エージェントのポリシーの潜在表現を学習するための強化学習に基づくフレームワークを提案する。
提案手法は代替手段よりも優れており,他のエージェントに影響を与えることを学習している。
論文 参考訳(メタデータ) (2020-11-12T19:04:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。