論文の概要: Viskositas: Viscosity Prediction of Multicomponent Chemical Systems
- arxiv url: http://arxiv.org/abs/2208.01440v1
- Date: Tue, 2 Aug 2022 13:16:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-03 13:45:14.129612
- Title: Viskositas: Viscosity Prediction of Multicomponent Chemical Systems
- Title(参考訳): Viskositas: 多成分化学系の粘度予測
- Authors: Patrick dos Anjos
- Abstract要約: 粘度を変数の関数として提供するために、いくつかの数学的モデルが構築された。
ニューラルネットワークによる非線形モデルを生成するために,データベースを構築した。
Viskositasという名前のモデルでは、平均絶対誤差、標準偏差、決定係数の統計学的評価が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Viscosity in the metallurgical and glass industry plays a fundamental role in
its production processes, also in the area of geophysics. As its experimental
measurement is financially expensive, also in terms of time, several
mathematical models were built to provide viscosity results as a function of
several variables, such as chemical composition and temperature, in linear and
nonlinear models. A database was built in order to produce a nonlinear model by
artificial neural networks by variation of hyperparameters to provide reliable
predictions of viscosity in relation to chemical systems and temperatures. The
model produced named Viskositas demonstrated better statistical evaluations of
mean absolute error, standard deviation and coefficient of determination in
relation to the test database when compared to different models from literature
and 1 commercial model, offering predictions with lower errors, less
variability and less generation of outliers.
- Abstract(参考訳): 金属・ガラス産業における粘度は、その生産過程、また地球物理学の分野でも基本的な役割を担っている。
実験的な測定は経済的に高価であり、時間的にもいくつかの数学的モデルが構築され、線形モデルや非線形モデルにおいて、化学組成や温度といった様々な変数の関数として粘度が得られた。
ハイパーパラメータの変動によるニューラルネットワークによる非線形モデルの生成と,化学系や温度に対する粘性予測の信頼性の向上を目的としてデータベースを構築した。
viskositasと名づけられたモデルは、文献や1つの商用モデルと異なるモデルと比較して、テストデータベースに関する平均絶対誤差、標準偏差、決定係数の統計学的評価が向上し、エラーの少ない予測、ばらつきの少ない予測、異常の発生の少ない結果が得られた。
関連論文リスト
- HomoGenius: a Foundation Model of Homogenization for Rapid Prediction of Effective Mechanical Properties using Neural Operators [12.845932824311182]
均質化(homogenization)は、多スケールの物理現象を研究するための重要なツールである。
本稿では,演算子学習に基づく数値ホモジェナイゼーションモデルを提案する。
提案したモデルでは、任意の測地、材料、解像度に対して、迅速に均質化結果を提供することができる。
論文 参考訳(メタデータ) (2024-03-18T06:47:35Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Artificial neural networks for predicting the viscosity of
lead-containing glasses [0.0]
SciGlassデータベースは、化学組成、温度、粘度のトレーニング、検証、試験データを提供するために使用された。
トレーニングデータと検証データで構築された最良のモデルは、文献の他の7つのモデルと比較された。
スキューネスとクルトシスを計算し、テストデータで構築された最高のニューラルネットワークによって予測される値との間には良好な相関関係がある。
論文 参考訳(メタデータ) (2022-11-11T00:04:56Z) - Building Robust Machine Learning Models for Small Chemical Science Data:
The Case of Shear Viscosity [3.4761212729163313]
我々はLennard-Jones (LJ)流体のせん断粘度を予測するために、いくつかの機械学習モデルを訓練する。
具体的には,モデル選択,性能評価,不確実性定量化に関する課題について検討した。
論文 参考訳(メタデータ) (2022-08-23T07:33:14Z) - Uncertainty quantification for predictions of atomistic neural networks [0.0]
本稿では、量子化学参照データに基づくトレーニングニューラルネットワーク(NN)の予測における不確かさの定量化値について検討する。
PhysNet NN のアーキテクチャを好適に修正し,キャリブレーションの定量化,予測品質,予測誤差と予測不確かさの相関性を評価した。
論文 参考訳(メタデータ) (2022-07-14T13:39:43Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Polyconvex anisotropic hyperelasticity with neural networks [1.7616042687330642]
有限変形に対する凸機械学習に基づくモデルを提案する。
モデルは立方体格子メタマテリアルの非常に困難なシミュレーションデータで校正される。
データアプローチのデータは、機械的な考慮に基づいており、追加の実験やシミュレーション機能を必要としない。
論文 参考訳(メタデータ) (2021-06-20T15:33:31Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
同じ良い線形モデルから非負関数に対する最初のモデルを提供する。
我々は、それが表現定理を認め、凸問題に対する効率的な二重定式化を提供することを証明した。
論文 参考訳(メタデータ) (2020-07-08T07:17:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。