論文の概要: HomoGenius: a Foundation Model of Homogenization for Rapid Prediction of Effective Mechanical Properties using Neural Operators
- arxiv url: http://arxiv.org/abs/2404.07943v1
- Date: Mon, 18 Mar 2024 06:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-14 13:03:36.110534
- Title: HomoGenius: a Foundation Model of Homogenization for Rapid Prediction of Effective Mechanical Properties using Neural Operators
- Title(参考訳): HomoGenius:ニューラル演算子を用いた機械的特性の迅速予測のための均質化基礎モデル
- Authors: Yizheng Wang, Xiang Li, Ziming Yan, Yuqing Du, Jinshuai Bai, Bokai Liu, Timon Rabczuk, Yinghua Liu,
- Abstract要約: 均質化(homogenization)は、多スケールの物理現象を研究するための重要なツールである。
本稿では,演算子学習に基づく数値ホモジェナイゼーションモデルを提案する。
提案したモデルでは、任意の測地、材料、解像度に対して、迅速に均質化結果を提供することができる。
- 参考スコア(独自算出の注目度): 12.845932824311182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Homogenization is an essential tool for studying multiscale physical phenomena. However, traditional numerical homogenization, heavily reliant on finite element analysis, requires extensive computation costs, particularly in handling complex geometries, materials, and high-resolution problems. To address these limitations, we propose a numerical homogenization model based on operator learning: HomoGenius. The proposed model can quickly provide homogenization results for arbitrary geometries, materials, and resolutions, increasing the efficiency by a factor of 80 compared to traditional numerical homogenization methods. We validate effectiveness of our model in predicting the effective elastic modulus on periodic materials (TPMS: Triply Periodic Minimal Surface), including complex geometries, various Poisson's ratios and elastic modulus, and different resolutions for training and testing. The results show that our model possesses high precision, super efficiency, and learning capability.
- Abstract(参考訳): 均質化(homogenization)は、多スケールの物理現象を研究するための重要なツールである。
しかし、有限要素解析に大きく依存する伝統的な数値的均質化は、特に複雑な測地、材料、高分解能問題を扱う際に、広範な計算コストを必要とする。
これらの制約に対処するために,演算子学習に基づく数値同化モデルを提案する。
提案モデルでは,任意の測地,材料,分解物の均質化結果を迅速に提供し,従来の数値均質化法と比較して80倍の効率向上を実現している。
我々は, 周期材料(TPMS: Triply Periodic Minimal Surface)の有効弾性率の予測におけるモデルの有効性を検証した。
その結果,本モデルは高精度,超効率,学習能力を有することがわかった。
関連論文リスト
- FFT-based surrogate modeling of auxetic metamaterials with real-time prediction of effective elastic properties and swift inverse design [1.3980986259786223]
軸構造は、その基盤となる構造形状と基材特性に強く影響される効果的な弾性特性を示す。
軸単位細胞の周期的均質化はこれらの特性を調べるのに利用できるが、計算コストが高く、設計空間の探索に制限がある。
本稿では, 補助単位細胞の有効弾性特性をリアルタイムに予測するサロゲートモデルを開発した。
論文 参考訳(メタデータ) (2024-08-24T09:20:33Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
本研究では,異なるシミュレーション手法をハイブリダイズし,インタラクション・ピクチャー・シミュレーションの性能を向上させるフレームワークを提案する。
これらのハイブリッド化手法の物理的応用は、電気遮断において$log2 Lambda$としてゲート複雑性のスケーリングをもたらす。
力学的な制約を受けるハミルトニアンシミュレーションの一般的な問題に対して、これらの手法は、エネルギーコストを課すために使われるペナルティパラメータ$lambda$とは無関係に、クエリの複雑さをもたらす。
論文 参考訳(メタデータ) (2021-09-07T20:01:22Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
マルチスケールの均質化手法は、非弾性材料のマクロ力学的挙動の信頼性と正確な予測を行うためにしばしば用いられる。
ディープラーニングに基づくデータ駆動型アプローチは、アドホックな法則や高速な数値手法に代わる、有望な代替手段として台頭している。
本稿では,非弾性・複雑な構造を持つ機械材料のモデリングのための熱力学に基づくニューラルネットワーク(TANN)を提案する。
論文 参考訳(メタデータ) (2021-08-30T11:50:38Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
分子動力学データから最適線形ペリダイナミックソリッドモデルを抽出する学習フレームワークを提案する。
我々は,符号変化の影響関数を持つ離散化LPSモデルに対して,十分な適切な正当性条件を提供する。
このフレームワークは、結果のモデルが数学的に適切であり、物理的に一貫したものであり、トレーニング中に使用するものと異なる設定によく当てはまることを保証します。
論文 参考訳(メタデータ) (2021-08-04T07:07:47Z) - Polyconvex anisotropic hyperelasticity with neural networks [1.7616042687330642]
有限変形に対する凸機械学習に基づくモデルを提案する。
モデルは立方体格子メタマテリアルの非常に困難なシミュレーションデータで校正される。
データアプローチのデータは、機械的な考慮に基づいており、追加の実験やシミュレーション機能を必要としない。
論文 参考訳(メタデータ) (2021-06-20T15:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。