Realizing two-qubit gates through mode engineering on a trapped-ion
quantum computer
- URL: http://arxiv.org/abs/2208.01584v2
- Date: Wed, 3 Aug 2022 19:50:00 GMT
- Title: Realizing two-qubit gates through mode engineering on a trapped-ion
quantum computer
- Authors: Ming Li, Nhung H. Nguyen, Alaina M. Green, Jason Amini, Norbert M.
Linke, Yunseong Nam
- Abstract summary: We develop a simple method to essentially remove the pulse-modulation complexity by engineering the normal modes of the ion chain.
This opens up the possibility to trade off complexity between the design of the trapping fields and the optical control system.
- Score: 5.060542428690649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-qubit gates are a fundamental constituent of a quantum computer and
typically its most challenging operation. In a trapped-ion quantum computer,
this is typically implemented with laser beams which are modulated in
amplitude, frequency, phase, or a combination of these. The required modulation
becomes increasingly more complex as the quantum computer becomes larger,
complicating the control hardware design. Here, we develop a simple method to
essentially remove the pulse-modulation complexity by engineering the normal
modes of the ion chain. We experimentally demonstrate the required mode
engineering in a three ion chain. This opens up the possibility to trade off
complexity between the design of the trapping fields and the optical control
system, which will help scale the ion trap quantum computing platform.
Related papers
- Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Variational Quantum Eigensolvers in the Era of Distributed Quantum
Computers [0.0]
We show that a distributed quantum computing architecture with it limited capacity to exchange information between modules can accurately solve quantum computational problems.
Results provide a strong indication that near-term it modular quantum processors can be an effective alternative to their monolithic counterparts.
arXiv Detail & Related papers (2023-02-27T19:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum Optimal Control without Arbitrary Waveform Generators [1.572727650614088]
We show that arbitrary control of a quantum system can be achieved by simply turning on and off the control fields in a proper sequence.
We demonstrate the flexibility and robustness of the resulting control protocol, and apply it to superconducting quantum circuits.
arXiv Detail & Related papers (2022-09-20T17:27:27Z) - Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - A trapped ion quantum computer with robust entangling gates and quantum
coherent feedback [0.0]
Chains of ions held in a linear Paul trap are a promising platform for constructing such quantum computers.
We report on the construction of a small, five-qubit, universal quantum computer using $88textSr+$ ions in an RF trap.
arXiv Detail & Related papers (2021-11-07T19:17:23Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Two-qubit gates in a trapped-ion quantum computer by engineering
motional modes [6.665840430899067]
Gate-based, universal quantum computer that one day promises to unlock never before seen computational power.
Biggest challenge in achieving this goal arguably is the quality implementation of a two-qubit gate.
In a trapped-ion quantum computer, one of the leading quantum computational platforms, a two-qubit gate is typically implemented by modulating the individual addressing beams.
arXiv Detail & Related papers (2021-04-28T16:34:48Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Efficient, stabilized two-qubit gates on a trapped-ion quantum computer [4.547776040126478]
We present two methods to construct optimal pulses for entangling gates on a pair of ions within a trapped ion chain.
We illustrate these trade-offs on a trapped-ion quantum computer.
arXiv Detail & Related papers (2021-01-19T22:40:28Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.